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CURVATURE CHARACTERIZATION
OF COMPACT HERMITIAN SYMMETRIC
SPACES

NGAIMING MOK & JIA-QING ZHONG

In the study of complex manifolds the following conjecture is a well-known
and natural analogue of the elliptic case of the uniformization theorem.

Conjecture 1. Suppose X is a compact Kahler manifold of nonnegative
holomorphic bisectional curvature and positive Ricci curvature. Then X is
biholomorphic to a compact Hermitian symmetric space.

The special case, when X is of positive bisectional curvature and conjectured
to be P”, is the Frankel conjecture, resolved simultaneously and independently
by Mori [19] and Siu & Yau [22] in 1979 using very different methods. The
general case of Conjecture I is at present still open. A related conjecture in case
X is assumed to be Kahler-Einstein is the following,

Conjecture II. Suppose X is a compact Kiahler-Einstein manifold of non-
negative holomorphic bisectional curvature and positive Ricci curvature. Then
X 1is isometric to a compact Hermitian symmetric space.

The first efforts to resolve Conjecture 1I were due to Berger [3], who showed
in 1966 that a compact Kahler-Einstein manifold of positive sectional curva-
ture is isometric to P” and equipped with the Fubini-Study metric (up to a
scalar factor). This was reformulated by Goldberg and Kobayashi to the case
of positive holomorphic bisectional curvature. Later, Gray [8] proved Conjec-
ture II in 1973 under the stronger assumption of nonnegative Riemannian
sectional curvature. He introduced on the unit sphere bundle of X a (degener-
ate) elliptic operator D and developed a Bochner-Kodaira formula for DR, R
denoting the curvature tensor, to prove the vanishing of VR on X. The last
property is the simplest characterization of locally symmetric spaces in terms
of the curvature tensor. Apparently, there are serious difficulties in modifying
Gray’s argument to the general case of nonnegative holomorphic bisectional
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16 NGAIMING MOK & JIA-QING ZHONG

curvature since D will in general not be (degenerate) elliptic. This has left
Conjecture II open for a long time. It was one of the open questions in Kahier
geometry raised by Siu [21] in his address in 1983 to the International Congress
of Mathematics at Warsaw.

One connection between Conjectures I and II is inspired by the work of
Hamilton [10] on deforming Riemannian metrics of positive curvature on a
compact 3-manifold to an Finstein metric. It is hoped that such an approach
can be applied to compact Kahler manifolds of nonnegative holomorphic
bisectional curvature. In this connection we refer the reader to a recent article
of Bando [2], who used the evolution equation of Hamilton {10] and results of
Siu [20] on characterizing hyperquadrics to obtain an affirmative answer to
Conjecture I in the case of dimension 3. (The cases of dimensions 1 and 2 are
well known.)

In this article we resolve Conjecture II in the affirmative. Our starting point
is the method of Berger [3] on characterizing P" with the Fubini-Study metric.
He did this by showing that the Kahler manifold X under consideration has
constant holomorphic sectional curvature. To do this, he considered a point x,
on X and a unit tangent vector a of type (1,0) at x,, where the global
maximum of holomorphic sectional curvatures is attained, and applied the
maximum principle to AR ;,5(x,). For Conjecture II, we used the characteri-
zation of Hermitian symmetric spaces by the vanishing of VR, a property not
verifiable by a direct application of Berger's method. In a similar setting as
above, assuming X Kahler-Finstein of nonnegative bisectional curvature at
a € Txlo'o( X), one can show that relative to the Hermitian bilinear form
H,(£,8") = R 56(x), T-°(X) decomposes into the orthogonal direct sum of
eigenspaces Ca @ X, & A, where R ;0:(Xg) = 3R jz,5(x) for £ € #,, =0
for § € A7, and moreover AR, ;(xy) = 0.

Our idea is to prove first of all the invariance of R _,,; under parallel
transport of « along certain curves emanating from x,. To start with we prove,
using the maximum principle, that the global maximum of holomorphic
sectional curvatures is attained at every point x € X. Let v be an integral
curve of any vector field of “maximal directions” a(x); we prove the stronger
fact that the curvature tensor R is invariant under parallel transport along the
curve y. Using an orthonormal basis {¢;} at x € y consisting of eigenvectors
of the Hermitian form H,(£,£") = R 5 ¢(x), @ = a(x), we shall actually
prove the vanishing of all terms v R, ;;(x). The proof of the vanishing of such
covariant derivatives will occupy the bulk of the present article.

Our original aim was to prove that VR z,z(x) = 0 at a global maximal
direction « for all real tangent vectors 7 at x and all positive integers i. Since
the Kihler-Einstein metric is real-analytic, this would allow us to conclude the
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CURVATURE CHARACTERIZATION 17

invariance of R ,;,; under parallel transport along geodesics. Although this
scheme is too involved for higher order radial derivatives, it will be enough to
show VR z.z(x) =0 for 1 <i <7, which is sufficient to imply the invari-
_ance of R under parallel transport along integral curves of maximal directions.
The point of departure is the observation that Berger’s formula implies
AR _;.-(x) =0 and hence V,;Raaaa_(x) = 0for1 < i < 3 in view of the global
maximality of R g,z It follows that VR ;.(x) > 0. Define a (2k)th order
elliptic operator S*) on smooth tensors T by taking, at each point y where T
is defined, S@¥T to be the average, suitably normalized, of V2T over all
n € T,(X) of unit length. Clearly, SR . .(x) < 0. On the other hand, we
show that A’R_._.(x)> 0. For the Fuclidean case, S agrees with A2
However, for Kiahler manifolds in general S® differs from A2 by some
zero-order terms. Such zero-order terms are obtained by a number of commu-
tations. At x we have sufficient knowledge of zero-order terms to conclude
that SR ,;,2(x) = A’R ;,4(x), implying both are zero and that VR ,z,z(x)
=0forl <i<h5.

To proceed further one can consider similarly S@“R . .(x) and
S@k=DAR __ (x). In general the difference between S?% and S®*~?A is a
differential operator of order (2k — 4). We are able to prove in a way similar
to the above that S®R ; (x) = SWAR ;;,5(x) = 0, implying VR z.s(x)
for 1 € i < 7. This involves proving the vanishing of commutation terms
which are second order covariant derivatives of terms of the type R,z ; or
R ,z:z- These are obtained from variation equalities or Taylor series expansions
of curvature functions along geodesics issuing from x.

In order to prove the vanishing of Vv,R,;.;(x) we make full use of gradient
terms arising in formulas A’R ;,z(x) and S®AR ,z,z(x). To prove VR, ;,;(x)
= 0 it will actually be necessary also to show A’R ___.(x) = 0 and to make use
of gradient terms arising from A’R_,_.. One surprising thing in this scheme of
proof is that, under our special choice of basis at x, a € TM(X) a fixed
maximal direction, we show that there are only a few types of nonvanishing
curvature terms. Such information is also used in the proof of Vv ,R;;;(x) = 0.

At each x € X let V, be the real linear subspace of T}°(X) generated by
the nonempty set of maximal directions « € 7,( X). We can use the invariance
of R under parallel transport along integral curves of vector fields of maximal
directions to show that at some point x, the vector subspaces ReV, C T (X)
for adjacent points y constitute an integrable distribution. The integral sub-
manifolds are moreover complex, totally geodesic and locally symmetric. Then,
we use the theorem of Bonnet-Myers to show that these integral submanifolds
extend to complex submanifolds of X for a suitable choice of x, and that they
are mutually nonintersecting. We use this to show that the curvature tensor is
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18 NGAIMING MOK & JIA-QING ZHONG

reducible at each point, that the vector subspaces V,, x € X, constitute a
differentiable vector bundle invariant under parallel transport and that the
foliation of X by integral submanifolds of the distribution x — ReV actually
corresponds to a global decomposition of X up to a finite covering. This
allows us to prove Conjecture II inductively.

We believe that our analysis of the curvature tensor should also be useful in
other problems in Kihler geometry related to locally symmetric Hermitian
manifolds.

The main results of the present article, together with a sketch of the methods
of proof, has appeared in Mok & Zhong [18].

We would like to thank Professor Siu and Professor Yau for their interest in
the research project. The research was carried out while the second author was
a visiting member at the Institute for Advanced Study. He would like to thank
the Institute for its support and hospitality.
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0. Statement of results

Our main theorem in this article is the following confirmation of Conjecture
11 (in the introduction).

Main Theorem. Let X be a compact Kihler-Einstein manifold of nonnegative
holomorphic bisectional curvature and positive Ricci curvature. Then X is isomet-
Fic to a compact Hermitian symmetric space.

We remark that the nonnegativity of holomorphic bisectional curvatures is
strictly weaker than the nonnegativity of Riemannian sectional curvatures and
that the former concept is more natural in the context of complex differential
geometry. For a compact Kihler manifeld, holomorphic bisectional curvatures
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are nonnegative if and only if the unit ball bundle of the dual tangent bundle is
weakly pseudoconvex.

Our method of proof yields the following generalizations of the Main
Theorem:

Corollary 1.  Let X be a compact Kihler manifold of nonnegative holomorphic
bisectional curvature and constant scalar curvature. Then X is isometric to a
compact Hermitian locally symmetric space.

Corollary 2. Let X be a complete Kihler manifold of nonnegative holomor-
phic bisectional curvature such that the Ricci tensor is parallel. Then X is
isometric to a complete Hermitian locally symmetric space.

From the proof given for the Main Theorem, it is immediate to generalize to
the case when X is assumed to be of nonnegative holomorphic bisectional
curvature and the Ricci tensor is parallel and positive. The proofs of the
corollaries involve essentially a splitting of the flat directions of the Ricci
tensor. Corollary 1 follows from Corollary 2 and results of Bishop & Goldberg
[4]-{6] which assert that under the hypothesis of Corollary 1, the Ricci tensor is
automatically parallel.

1. Background material

(1.1) The curvature tensor on Kahler manifolds and commutation formulas.
Let X be a Kahler manifold. Denote by R = R< Lt > the Riemannian
curvature tensor on the underlying Riemannian manifold. By complexification,
R acts on (CT(X))* CT(X) denoting the complexified tangent bundle. On X
we have a decomposition of CT( X) into the orthogonal direction sum 70( X)
® T%(X). If we choose a system of holomorphic coordinates (z;, - -, z,) at
x € X, then {8/8z;,---,0/0z,} and {0/0z;,---,0/03Z,} constitute bases of
T!°(X) and T2} X) respectively. In terms of the corresponding decomposi-
tion of tensors into ( p, g)-types on a Kahler manifold, R is of type (2,2). In
terms of the basis {0/9z,---,0/0z,; 9/9z,---,8/9z,} of CT, (X) and
writing R, ;= R<a/az,., 9/0z;,9/0z,, 8/32,), etc., the only possible nonzero
terms Of R4 (indices with or without bars) are given by R, ;; and accompa-
nying terms obtained by permutation of indices. We write R,; for the Ricci
curvature tensor in terms of coordinates. Our convention on R is such that
R;p;1 > 0 for the Riemann sphere with the standard Hermitian metric of
constant positive curvature.

We say that X is of nonnegative holomorphic bisectional curvature if
R<§, £ ¢,8) >0forall xS and £¢ € TH9(X). In terms of indices this
means that L R,;;a,a,b,b,> 0 for all n-tuples (ay,---,a,), (by,---,b,) of



20 NGAIMING MOK & JIA-QING ZHONG

complex numbers. Every Hermitian (globally) symmetric space carries on
invariant Ké&hler-Einstein metric of nonnegative holomorphic bisectional
curvature. In terms of the curvature tensor we have the following characteriza-
tion of locally symmetric Riemannian manifolds.

Proposition (c¢f. Kobayashi & Nomizu [12]). A Riemannian manifold X is
locally symmetric at x € X if and only if in a neighborhood of x, VR = Q for the
Riemannian curvature tensor R.

The curvature tensor measures analytically the commutation of covariant
differentiations. For example, for a covariant tensor of the type 7;;;, we have,
denoting Vv T, ;= T34 . etC.,

I

Tiikise = Tjetess Tijwisi = Tijuiiss
Tijki,si = Tijki,rs + Rzp,stT gkl ™ p,jsrsz,kl
+Rkﬁsr_T;'jp,i Rp,lsr ijkp"

All three equations follow from the definition of R in terms of commutation
of covariant differentiations. The first two are consequences of the fact that R
is of type (2, 2).

In general, for any covariant tensor field Ty, .. .4, commutation for
second-order covariant differentiation occurs only if we commute two indices
of opposite type (one barred, one unbarred), in which case there are as many
commutation terms as there are indices in 7, the sign attached to a commuta-
tion term in Tyy . gx ; — Ty ... ;, 1S positive if it corresponds to a substitution
of an unbarred index in T,4 .. 44 and negative otherwise. This is simply
because — R, ;; = R;, ;.

Finally we recall that the Bianchi identity implies the equality R,;; , =
ijmi.x 10 the case of Kahler manifolds.

(1.2) Computation of AR ; . At x € X fixed let (z,- - -, z,,) be a system of
local holomorphic coordinates. For any smooth tensor 7 we shall denote by
AT the operator %, g’f(v v, T+ v~ .T), where g'/ is the contravariant
metric tensor. (See (1. 3) for the meaning of AT and other averaging differential
operators.) We recall here the computation of AR, in Berger [3] for any
tangent vector « of type (1,0).

Proposition (1.2). Let (zy,---,z,) be a system of local holomorphic coordi-
nates at x € X such that g, (x) = 8, for the Kahler metric tensor (g,;). Then,
denoting by p the Einstein constant, i.e. Ricci form = p(Kdhler form), we have

R

azaz — ZiRafajlz + pRa&aa 2Z‘Raa11| M

i.J iJ

1
EAR
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Proof. Obviously the right-hand side is independent of the choice of
holomorphic coordinates at x as long as they are unitary at x, and it suffices
to prove the proposition for e, of unit length. We may therefore choose
(z4,-++, z,) so that 9/0z; = a. Then, from

Raaaa,ii = Raaaa,ii + ZzRaﬂile,Lﬁaﬁ - ZZRyﬁifRaﬁaﬁ
L r
we have, using 2, R _;; = p§

it
ZRaaaa,ii = ZRaaaa,fi + 2pRaaaa - ZpRaaaa = ZRaEa&,fi‘
1 1 1

Hence

p| =
>

=

I

aqad ZRaaaa,ii - ZRaEiﬁ,af
i

il

ZRaaia,ia + ZRaﬁ.apr.Eiﬁ - ZR;LaaiRaﬁia
i i i

+ ZRiﬁal:Raﬁp.E - ZRpEafRaﬁiﬁ

i I
2 2

= ZRuaii,aa + Z'Rm’ajl + PRaaaa - ZZlRaaijl
i iJ )
by the Bianchi identity.

Since the metric on X is Kahler-Einstein, we have

ZRaaii.aa = Raa,aa =0,
i

proving the proposition.

(1.3) Averaging operators of radial derivatives. Let 7' be a covariant smooth
tensor of order m defined on an open subset U of X. At x € U let 5 be a real
tangent vector of unit length. Let y be a geodesic passing through x and within
the cut locus of x with 7 tangent to y at x. Let v,---, v, be complexified
tangent vectors at x and denote by the same symbols the vector fields defined
on y obtained by parallel transport. Then

V4T<Ul" Ty Um>(x) = (V:T)<Ul7' ) Um>(x)
since v,v; = 0 for 1 < j < k along v. Letting k be a positive integer, we define
the operator ST by setting

SCOT oy, 0,3 (x) = eau | TIT(vy,- -+, 5, )(x)
7

at each x where T is defined, where the integration is over the unit sphere of
the real tangent space at x, endowed with the unique rotation-invariant metric
of unit mass, and where c,, is a constant to be determined. In case k = 1 we
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have

S(2)T** ...**(x) = C2f V7,2T** ‘..**(x)'

n

Let (z,,---, z,)) be a local holomorphic coordinate system unitary at x. Then
n = ¢+ £ for some £ € T1O(X) of length 1/ V2. Write £ = £,a,(1)d/9z,,

2
SOThx . aalx) = sz (V):,a,.(n)a/az,.+E,a,.(n)a/az,.) Tox o xn(x)
g
= 2Rec2f 2a;(n)a (1) Tex ... xx(x)

LN,

+sz Za,-(n) aj("”l) (Vie—j + 6jvz')T=|<=|= ax(X).
iy

Denote
by= [a(n)a(n), b= [ aln)a(n).
7 7

Consider on T1%(X) = C” the transformation
0, 8,
(al,. -, ai,. . .,aj,. . .,an) — (al’. . .,el ,ai’- . .,el jaj’. . .,an),

where the left-hand side stands for ¥ 4,0/0z,. This induces an orthogonal
transformation 7 = 1’ on T.(X) = {£ + & ¢ € TMO(X)). It follows that

bij = f ai(n')aj(n') = ei(0i+0j)bij7

n
b;; = Lai(nl) aj(nl) = ei(ai_oj)bij~
Choosing 8;, 8, suitably we see that b;; = 0 for all i, j and that b; = 0 unless
i = j. By symmetry, clearly b;; = --- = b,;.. These constants can be com-

puted by taking T to be the function ¥;|z,;|*> and comparing coefficients. In any
case by; > 0 and we choose c,b;7 = 1, giving

S(Z)T** cakk T ZV,‘V{T**.--** + ZV,‘-ViT**“.**,
ie, SOT =L, (vv; + Viv,)T. We use AT to denote S@T. There are two
related 4th order averaging differential operators, namely A> and S. We have
NT = Y(vw; + V) (V9 + v,)T

j i i

L)
= YT+ T+ Tauy+ T
)
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By the same argument as above we have

4 —
SOT = C4me,( aivingivin T T+ Tig)

+¢y X bii(T ivingiein + T iieipaivin
i<j
T Gjejinijrin T T gjrjiag+in

+T +T

ajsincivin T T iipaiin)-
Here we are adopting the convention

T it T+ T+ T

T.(ii+fi)(jj‘+ij) = L ) Jijj Jijjo

etc. The equality above is obtained by noting that the only nonzero terms in

byx++ must come from 2 pairs of conjugates, €.g. b;;;:, b;;;;, etc., which follows
from using the transformation
(al" -n,ai’-..,aj’nu.,ak,--~’al"--’an)
—_ (al’. . ,eioiai’. .. ’eiojaj,. o, eiokak,. L eiolal’. LN an).

Obviously b;;;; remains unchanged when indices are permuted, but the corre-
sponding covariant differentiation may differ because of the curvature. We
write the expansion for ST in a more uniform manner. Denote by S, the
permutation group of 4 elements. For any o € S, and any 4th order covariant
differentiation T7,p. 5 (indices with or without bars), we denote by 77,55 the
4th order covariant derivative obtained by formally permuting the four indices
using o € S,. In this notation we can write

S(4)T'—C4Z Z_” Z Tltll+c4zblljj Z Tujj

0cES, i<j 0ES,

Note that in the original expression that there are 6 terms attached to b;,; and
24 terms attached to b;;; i i < j. This accounts for the factor of 1/4 in the first
term of the new expression. Our main result in this section is the following:

Proposition (1.3). For a suitable choice of positive constant c,, we have the
expansion

6SOT =3 ) T%;.
i,jo€eS,

Similarly, for any positive integer k

2k)!
Blgeor- T T T
2 B, iy 0E Sy,
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Proof. We will only prove the special case k = 2 since the proof of the
general case is exactly the same. Recall that b; ; is defined by

biijj =fai(n)ai(n)aj(n)aj(n)‘

n

Obviously b;;;; = b,7;5 forall iand i',1 < i,i’ < n, and b;;

iiit fi e

and i’ # j’. It follows that ST must be of the form

(*) SOT=c) ¥ T+ X X Tl

I o&S; i#j6ES,

= bi,yj,f fori+#j

We claim that in the Euclidean case ST agrees with AT for a suitable choice
of ¢,,. We denote the operators S and A? in the Euclidean case by S§¥ and
A% respectively. Then, the symbol of the fourth-order operator S{¥ with
constant coefficients is a fourth-order polynomial on C” (with coordinates £)
in &,,---,&,; &, -+, &, invariant under rotations, so that it must be a (positive)
multiple of (T,|£,])?, the symbol of A%, hence proving the claim. From now on
we will choose the constant c,, > 0 such that S{¥ = A2, Now from () we
have
CZ Z T(,’iz_'il_' + C’Z Z T?iz_'jj' = ZT,(ii+ii)(jj+jj)
i ogS, i#j0ES, ij
in the Euclidean case. But in this case T° .55 =T ,5,5- By comparing
coefficients this yields that ¢’ = ¢, so that in general
4 (1]
S( )T= CZ Z T,ifjj"

i,.j 6E€ES,

The constant ¢ can be obtained by setting the right-hand side equal to
AT =4%i,jT ; 7 in the Euclidean case, yielding the special case of k = 2
and in an analogous manner the general case of Proposition (1.3).

(1.4) Conversion of radial derivatives to mixed covariant derivatives. In the
argument of showing that certain components of covariant derivatives of the
curvature tensor vanish at a given point x, it will be a typical situation first to
show radial derivatives of certain orders along geodesics y through the point x
vanishing and then to show similar vanishing phenomena for mixed covariant
derivatives. Suppose for some fixed positive integer k we have V,fR ijki(x) =10
for all real tangent vectors 1 at x. In the Euclidean case this would mean that
for R,;; all covariant derivatives of degree k at x, symbolically V*R, (%),
would vanish at x. However, for a general Kahler manifold this is not the case.
We have the following proposition in the general case of Riemannian mani-
folds.
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Proposition (1.4). Let M be an m-dimensional Riemannian manifold and let
x € M such that for the given smooth tensor T, the covariant of order I,
V,;‘Til,-Z .;,(X) = 0 for some specific indices i\,---,i, and for all real tangent
vectors m at x. For any o € Sy, we denote by (V{'vy? -+ V)T, ., (x)
the components of covariant derivatives obtained by permuting the order of the

k =k + .- +k, derivatives using o. Then we have
L (Vs van) T (x) = 0
o€ S,

for any set of nonnegative integers k,-- -, k,, suchthatk, + --- +k, = k.
Proof. Let xq,---,x, be real normal geodesic coordinates at the point
x € M. The point x is then the origin in this coordinate system. For any real
tangent vector 1 = a,0/9x; + - -+ +a,9/9x,, of unit length we have
s
T;'liz---i,(tn) =2 ;-!V;Z'Iizmi, =) %Vrsnzli2~~.i,-
s>0 s=0""

Writing tn = (xy, x4,- -, X,,,) we have

T;’,iz---i,(xl’xz"",xm)
=X X L9V 9T, OxPxy - xi,
§20 85+ -+ +5,=5 0ES;
5,20

where S, is the group of formal permutations of the s indices involved in the
covariant differentiation. The proposition follows immediately by setting equal
to zero all the coefficients of kth order monomials xfixk2 -+ xkn, k, + k,
+ -+ +k, = k, which must be the case when v,ﬁ‘Til,.2 ...;(0) = 0 for all real
tangent vectors 9 at x.

Remarks. In the complex case we can rewrite the formula in Proposition
(1.4) by allowing the differentiations to be against barred or unbarred indices.

(1.5) Second variation inequalities associated to the curvature tensor. Let X
be a Kihler manifold and x € X be a point where holomorphic bisectional
curvatures are nonnegative. There are two important and well-known inequali-
ties associated to R,;,;(x). They are respectively related to maximal directions
of holomorphic sectional curvatures and flat (zero) directions of holomorphic
bisectional curvatures. We formulate them in the form of two lemmata.

Lemma (1.5.1). Let X be a Kihler manifold and x & X be a point where
holomorphic bisectional curvatures are nonnegative. Suppose o € T}(X) of
unit length is the direction attaining the maximum of all holomorphic sectional
curvatures at x. Then, for any &£ € TY°(X) of unit length which is perpendicular
to «, we have

0 < 2R'aa££'(x) + 'Ragag(x)l < Raﬁaﬁ(x)'
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Proof. We shall henceforth call a a maximal direction of holomorphic
sectional curvatures at x or simply a maximal direction at x. We have, for any-
¢ > 0 and any real 6,

R<a + eet, a + et ; o + ee®, a + eei9§> <1+ ) R

Since £ is orthogonal to «, ||a|| = ||£|| = 1 and «a is a maximal direction at x.
Here and henceforth in the article we will sometimes drop the reference to the
point x when there is no danger of confusion. Comparing the coefficients of ¢
immediately yields R ,;,; = 0. Comparing the coefficients of ¢* then yields

4R o + 2 Re( 2R yzo) < 2R ygoa

We can always choose the angle 4 so that 2 Re(ezioRagag) > 0, yielding
0< 2Rat_x§£— + ,Rag_ag' < Ra&a&)

the desired inequality.

Lemma (1.5.2). Let X be a Kihler manifold and x € X be a point where
holomorphic bisectional curvatures are nonnegative, Suppose a, 8 € TO(X) are
such that R ,z,5(x) = 0. Let £,§ € T[°(X) be arbitrary. Then

2 2
IR ugor| +|Raper| < RuageRems-

Proof. Since holomorphic bisectional curvatures are nonnegative at x, we

have for all 8, e > 0 and 6, ¢ real )
R{a+ 8%, a + 86 ; B+ ee™t, B+ ee™E ) > 0.
Expanding in terms of §, z and writing out the coefficients of 8, ¢ we obtain
R azpz = Rppai = 0.

From the second-order terms we obtain

€2R 3 +82RBE§§ +2RC£8(e‘i(0+¢)Ra§B§> + 2Re 88(€i(¢_a)Ra3£§> = 0

aat
for 8, e sufficiently small and hence for all 8, ¢ > 0. By making the transforma-
tions £ — e%¢ and ¢ — e™0¢ so that R ,gp¢ is changed to e“'(%*"’o)RagB? and
R g5 is changed to e'®o"¢0R g,. we may without loss of generality assume
that to start with both R ,z4; and R g are real. Then by choosing § = ¢ = 0,
we obtain from the discriminant

2
'Rai_ﬂf +Ral§§§_" < Ra&é’g‘RﬂEff'
By choosing ¢ = #/2, § = —a /2, we obtain on the other hand

2
|Ruges — Ropee| < ReageRppr-
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Summing up the two inequalities and dividing by 2, we obtain the desired
inequality

2 2
|Rogoel +|Rogssl < RoaeeRpp-

2. Zero-order information on curvature terms associated
with a global maximal direction

(2.1) By using the computation of (1.2) and Lemma (1.5.1), Berger (3]
obtained, in the case of positive sectional curvature, that for a unit vector
a € TO(X) attaining the global maximum of all holomorphic sectional curva-
tures, R,z:z = 3R 545 for any £ € T1(X) of unit length and orthogonal to
a. In the case of nonnegative holomorphic bisectional curvature, his computa-
tion yields immediately

Proposition (2.1). T}°(X) splits into the orthogonal direct sum Ca & #®
N, where H consists of all £ € T}°(X) such that R .35 = 0 and A~ consists of
all { € T}°(X) such that R 5.5 = 0.

Proof. Since R _,,; is a global maximum of all holomorphic sectional
curvatures, we have

R o x) = const jn v2R(a(y),a@(y),a(»),&(y))(x) < 0

as in (1.3), where 7 ranges over all real tangent vectors of unit length, a(y)
denotes on a neighborhood of x the vector field obtained from a(x) = a by
parallel transport along geodesics from x and the integration is with respect to
the rotation-symmetric measure of the unit sphere of 7,(X). On the other
hand, from (1.2) we have

%ARaHaa = Z IRafaj|2 + Z (Raﬁ a 2Raau) a@&ii
i#1 i*1
or j#1
for an orthonormal basis {e,} of T,"°(X) such that e; = a and R 5,; = 0 for
i # j. From Lemma (1.5.1) we have R ;;; < 3R 5,5 yielding
AR ;.5 > 0.
Equality holds if and only if R ,;; = 3R 305 Or 0 for i > 1 and that R,;,; =0

for all i, j except i = j = 1. In particular we have the orthogonal decomposi-
tion of T1%(X) into eigenspaces of the Hermitian bilinear form H (£, &) =

Raagg.
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From now on we shall fix an a and call 5, =5 the half-space and
AN, = A the null-space associated to a.

Also from here on we shall fix an a € T*°(X) of unit length such that
R yaaz = SUPg e 119 x) =1 R ez, Where a € T.M0(X) shall be termed a global
maximal direction (of holomorphic sectional curvatures). We shall also fix an
orthonormal basis of T!}?(X), according to the orthogonal decomposition
T}°(X) = Ca ® #® A", consisting of {e,,---,e,} such that e, = a, e, €#
for2<p<mand e,e N for m+1<qg<n Write H={2,---,m} and
N={m+1,---,n). For a € T}*(X) fixed, we shall typically use the indices
given by the above choice of bases. Since the choice of {e,: p € H} and {e,:
g € N} is arbitrary within 5 and 4" as long as they form orthonormal bases
of »# and A" respectively, we shall also use the notations e, and e, for
general elements of 5 and A" of unit length. Any orthonormal basis {e,} U
(e, pEH}U{e,; g€ N} associated to a € TXIO*O(X) will be called a
privileged orthonormal basis associated to a.

To systematize once and for all the choice of notations, we use, as has been
the case, £, { to denote the complexified tangent vectors of type (1,0) and 7 to
denote the general real tangent vectors. The new indices arising from substitu-
tion in commutation formulas will be denoted by p, ».

(2.2) Equations satisfied by curvature terms associated to a global maximal
direction. We collect here the necessary information on R;; 7 associated to a
global maximal direction of holomorphic sectional curvatures a = e, €
T:°(X). Some of these equations are already contained in Proposition (2.1)
and its proof.

Proposition (2.2.1). Let a € Txlo*o( X) of unit length be a global maximal
direction of holomorphic sectional curvatures and let {e,} U {e,: p € H} U {e:
g € N} be a privileged orthonormal basis of TXIO’O( X) associated to a. In terms
of this basis, we have

() Ry1p; = 3Rypy > 0 forp € H.

() Ry;=0fori+1lorj+1.

() Ryz,;=0 forge N and 1 < i, j < n. (In particular Ryy,; = Ri1,; =0
forp € Handgq € N.)

(d) Ry;,; =0 forp e H.

(© X, cylRig: > = RizgRyg,; for E€ ¥ andg € N.

©) Rypay = Q/RinDE, ey Rip iR 1,5

Before proving Proposition (2.2.1) we give a few remarks on our formulation
of the equations. Since the equations are stated for arbitrary choices of
privileged orthonormal basis associated to a, the equations are satisfied for e,
an arbitrary unit vector of the half-space 5# and e, an arbitrary unit vector of

the null-space A4". For example, the equation R;7,; = 0 implies by polarization
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Ri1,5 = 0 for ¢,4" € N, and the equation R;;,, =0 for p € H implies by
polarization R;;,;. =0 for p, p’, p”” € H. Equation (e) implies by polariza-
tion the following representation of curvature terms R ;... in terms of Ry; z.

Proof of Proposition (2.2.1). (a), (b) and the special case of (c) in parenthe-
ses are included either in the statement or the proof of Proposition (2.1). We
first prove (d) by a third-order variation equality at « = e;. Consider the
function F(e) in the real variable ¢ defined by

F(e) 1

= mR<el tee,, e t+ee,, e t+ee, e+ eep>.

Proposition (2.2) implies the vanishing of both the first and the second
variation of F(e) at € = 0. In fact

1 2 3 4
F(e) = m(Rﬂﬂ +4¢ Rﬂp}-, +4¢ ReRlﬁpﬁ +e RP}_?PI_J)
since Ryfj5 = Rypp = 0.
Since R,j,, = 3R,j;7 We obtain

F(e)

e;tee, e tee, e +ee, Z+eep
\/1+£2 x/l+32 \/l+£2 \/1+ez

— 1 2 3 4

Y (Ry1j1 +26?Ryz1 +46'ReRy,,, +6°R 5,0 ).
Since F(0) = le,‘ by comparing coefficients of Taylor expansions of the
denominator and the numerator, we have immediately dF(0)/de = d*F(0)/de?
= (. Since F(&) < Ryy;7 the third-order variation equality yields

0.

d°F

E(O) = 4R(3R11—,m—7 =
Since the same equality holds with e, replaced by eioep, we conclude the
equation (c)

Ry, =0 forall pe H.

(Recall that e, € 5, |le,|| = 1, is arbitrary so that by polarization R,;,;- = 0
for p, p’, p” € H)
To finish the proof of Proposition (2.2.1) we shall need the following
analysis at the zero directions R;1,;(x,) of holomorphic bisectional curvatures.
Proposition (2.2.2). Let g€ Nand a = e, € TXIO*O(X ) be a global maximal
direction of holomorphic sectional curvatures. Then, ARij;(xy)=0. Hence
V;Rliqa(xo) =0for 0 <i<3.
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Proof. First, we compute AR
a commutation formula. Hence

1
ERquﬁ

1147~ It is immediate that Ry3.;;; = Ri1gq,; DY

= YRy 47 (summations over i with unspecified
i

ranges will henceforth mean 1 < i < n)

= ZRliiﬁ,qf

!
= ZRﬁia,iq + Z(quiR;Jia _R,quleq
i i
+ Riﬁquli]Lﬁ - quqz’Rliiﬁ) .
Since

Y Riigig = X Rigiigy = Riz0=0,
i i

we obtain at x,

1 2 2
EARﬂqq = ZlRlﬂ.qfl + Rliqa - Z\Rlam‘ - ZRﬂirLRm’qq-
ip ip ip
From R;;,; = 0 and first variation equalities, noting that bisectional curva-
tures on X are nonnegative, we obtain immediately

Rig=Ri;=0 forl<i<n, e, €A, |e,| =1arbitrary.

This yields at x|,

1 2 . 2
ARy = Y Rl = XlRiugl = X RippRpper
p.reH i,j pPEH

We claim that from the second-variation inequality Lemma (1.5.2)
ARliqa(xo) < 0.

Since X carries nonnegative holomorphic bisectional curvatures
ARliqq(XO) = O’

yielding Proposition (2.2.2). To prove the inequality AR;1,;(x,) < 0 we give
two different approaches. First, we recall the following lemma in linear
algebra.

Lemma (2.2.3). Let S(z; z") be a complex symmetric bilinear form on a
complex vector space C” represented by the matrix S with respect to the canonical
coordinates of C". Then there exists a unitary transformation U of C" (relative
to the Euclidean Hermitian structure) such that U'SU is a diagonal matrix.

Using Lemma (2.2.3), we diagonalize the complex symmetric bilinear form
S(§ €)= Ryge on K yielding Ry, =0 for p # p for some choice of

pqp
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orthonormal basis {e,} of #. In this coordinate system we have

1 2
FAR, = 2 |Ripgp LRyl = X RippRopag
pEH iJ PEH

2
|

Note that Z&E HIR1; q,| is invariant under the unitary transformations on #
since tri(U'SSU) = tr(U'SSU) = tr(SS). From the second-variation inequality
(1.5.2) we have

, ,
|Ripsl +|Rigps| < RitppR 545
This yields

lqu Z‘Rl(]l}i <

This yields a proof of Proposmon (2.2.2) and with it also the equation (d)
=0 foralli,j,1<i,j<n

Rizij
Since Lemma (2.2.3) is proved entirely by algebraic means, it would be
desirable to give a geometric proof of

(#) |R1pqr| < ZRUPP pP9q

P
in our situation without a special choice of coordinates. We claim that for any
¢ € 5 and any orthonormal basis { e, } of H#,

(*) )Y ingqu + Z |R1qgr| < 5 miRg;qa-
rEH
Then, integrating (*) over £ € # of unit length using a rotation-symmetric
metric on the unit sphere yields immediately (#) and hence another proof of
Proposition (2.2.2).
To prove () observe first of all that Lemma (1 5.2) yields only

1
lRlpqr‘ < 5R1T1TR£€¢1¢7'

We shall now prove (x) by making a better use of the argument of the
second-variation used in Lemma (1.5.2). Consider the Taylor expansion of

G(e) = R(el +eb, e tel,e,+e) Ce,e,+e) C,e,).

reH refd
We then have

2
G(e) = 52(R£w+ Y ICI R+ X 2ReCR1£q,+ 3 2ReCR1q,£)
re reH reH
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Since X carries nonnegative holomorphic bisectional curvatures, 32G(0)/0¢? is
always nonnegative for any choice of complex numbers C,. It follows that the

quadratic form Q in (z,, z,," - -, z,,), defined by
2 2Ri1y7
Q((Zl""’zm);(zlf"’Zm)):lzll R~£€q¢7+ Z lz’l 12111
2grgm
+ X 2Re(ZIZrR1§q7 +Z_12rR1ar§‘)’
2gr<m

is positive semidefinite. Now take z, to be of the form x,e', x,, 8, real, for
2 < r < m and take z; = x, real and positive. Choose 6, and replace e, by
e, for an appropriate real a so that e_""rngq; is real and > 0 while
e"”le is < 0. By computing the determinant of the symmetric matrix

representing the real symmetric bilinear form Q, given by
Qo((xu' ) xm); (xl" o xm))
= Q((x x2et: ---,xmeio"'); (xl,xe"'s'2 xe'0m)),

we conclude immediately that

2 Ry

ZHI |Riggr] =|Riges] | < =5 Rezyg
re
By a similar argument we have
2 Ry
ZHI |R1§qf| + \ng;\ < 12111R£§q¢7'
re

Adding the two equations and dividing by 2, we obtain immediately the
statement ().

End of proof of Proposmon (2.2.1). The second proof of Proposition (2.2.2)
yields immediately from the equality A R;7,,(x,) = O the equality

(e) Z Ingqf

reH

2 Ry
‘ ) Rﬁéqﬁ'

(e)’ is obtained easily from (e) by polarization. To see this define a tensor
T,5,5 of type (2,2) for p, p’ € Hand q,q' € N by

Topgr = le ,;HRIP g R pirg
Clearly Tig; = Ry for £ € 5 and { € A", It suffices therefore to show that
from Sggp = Tpges — Ryzep = 0, one can prove S, . = 0, proving 7,5 ...
R 5.7 1.€. (¢)". But now for ¢, 8 real and 6, ¢ real angles

S(ep + ee“’e’ , e, +eee, ;e +8ei;, e, + Sei“’e;) =0



CURVATURE CHARACTERIZATION 33

giving by computing the coefficient of &8

—i(8+¢) i(8-4) -
2Ree R .+ 2Ree Rp,ﬁqq, 0

pP'qq

for all real # and ¢. This implies R ;.7 = R 5,2 = 0.

3. Structure of the space of maximal directions on 7'°( X)

(3.1) Everywhere existence of global maxima of holomorphic sectional curva-
ture. From now on X will stand for a compact Kahler-Einstein manifold of
nonnegative holomorphic bisectional curvatures. We denote by S}°(X) the
unit sphere of the hermitian vector space T!°(X) of complexified tangent
vectors of type (1,0). S*°(X) will denote the sphere bundle thus obtained.
Define the function f on X by f(x) = SUp; ¢ s1ocxy Regez. If @ € S10(X) and

azaz = f(x) we shall call & a maximal direction (of holomorphic sectional
curvature at x). Clearly f is a continuous function. Our main result here is the
following proposition:

Proposition (3.1). The function f is constant on X. In other words, the global
maximum sup; ¢ sio xy Rz of all holomorphic sectional curvatures is attained at
every single point of X.

Proof. We prove the proposition by using the maximum principle. It
suffices to show that f is subharmonic in the generalized sense. The starting
point is the following consequence of Berger’s computation.

(%)

The proof was given in Proposition (2.2.1). There, for the verification
AR (50a(Xx) = 0, it suffices to assume that R ;,5(x) = sup; e sio(x) Rezes- We
note that since AR . . is the Laplacian of the tensor R, evaluated at

< @,&; a,&) we cannot apply the maximum principle directly. Instead we
claim that at each x € X, and for any a € S'°( X) such that R, = f(x),

(**) Af(x)>AR ——(X)>0

aooo

Let « € S}°(X) be a maximal direction of holomorphic
sectional curvatures at x. Then AR _, .(x) > O.

in the generalized sense. To prove (x*) we construct local barrier functions for
f, denoted by g, as follows. Fix x € X and a € SM(X) with R .. = f(x)
= Sup; ¢ s19¢xy Regeg- In an open neighborhood U, of x within the cut-locus of
x we shall denote by a( y) the complexified tangent vector at y of type (1,0)
obtained by parallel transport of a = a(x) along the unique geodesic joining x
to y within the cut-locus of x. Define g (y) = R<‘a(y), a(y), a(y), a(y)>
for y € U,. From the discussion in (1.3) of averaging operators of radial
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derivatives we know that
Agx(x) = ARa&aﬁ(x)'

We know that on U,, g, < f and that g (x) = f(x). For the Laplacian of
continuous functions, we have the generalized definition (following Oka)

. 1 fB(x:r)f
Af(x) = ¢y, lim — :
7(x) = €3, lim Y2( -~

- 1)

With this definition f is subharmonic on X if and only if Af(x) > 0 at each
point x € X. Obviously Af(x) » Ag, (x) since g.(x) = f(x) and g, < f on
B(x; r). It follows that

Af(x) 2 AR gou(x) = 0

in the generalized sense. Thus, f is subharmonic and hence constant on X,

(3.2) Structure of the bundle of “maximal subspaces”. On the unit sphere
SI(X) of T!O(X), we shall denote by #, the set of all a € SM(X)
attaining the global maximum of holomorphic sectional curvatures. By (3.1)
A . is nonempty for any x € X. We denote by V, the complex linear span of
M . and call it the “maximal subspace” at x. We call V = U, _,V, € T??(X)
the bundle of maximal subspaces. Note that we do not know at this point that
V is a differentiable vector subbundle of T719( X). Denoting by 7: T'(X) > X
the canonical projection, we shall write V|, = ¥ N «~YU) for the restriction
of V to the open set U. We claim that

Proposition (3.2). There exists a point x € X such that in some open
neighborhood U, of x, V|, is a differentiable complex vector subbundle of
Tl‘O(Ux).

Proof. Denote by # =U, _x #, the bundle of maximal direction /# C
S10(X), A is defined by the real-analytic equation R . = SUP; < 510 xy Rezes
so that it is a real-analytic subvariety of the compact real-analytic manifold
S1O(X). Let # =M, VU --- UM, be the decomposition of # into irreduci-
ble components. Since the global maximum of holomorphic sectional curva-
tures is attained at each x € X, we have U, _,; ., 7(# ;) = X. We arrange the
A ; such that = is a submersion at some regular point of ./, if and only if
1 <i<k, and denote by #’ the union U, ,#, Denote by U the
nonempty open set X — w(U,, , #,). Then foreachx € U, #,C #'.Let E
be the union of singular points of .#’ and regular points of .#” at which =:
Reg(#") — X fails to be a submersion. We claim:

Lemma. F is a real-analytic subvariety of M’.
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Proof. The problem being local, it suffices to prove the following

Let W be an irreducible real-analytic subvariety of some open
subset G of RY such that the projection p,(x;,- -+, xy) =
(x4, + -, X) onto the first n coordinates is of rank n at some
(+) point of W. Let S be the union of the singular points of W
and the regular points of W at which p fails to be a
submersion. Then § is a real-analytic subvariety of W.

To prove () assume 0 € W and let f,,---, f, be generators of the reduced
ideal sheaf %,, N G’ for some open neighborhood G’ of 0, G’ € G. We can
regard RY as the real part of CY and extend (cf. Gunning & Rossi [9])
fi,* -+, fx to holomorphic functions Fi,- - -, F, on a Stein neighborhood D of 0
in C" such that D N RY = G’. Then the common zero set of Fy, -, F, is a
complex-analtyic subvariety C of D such that CN G = W n G’. We can
assume, by shrinking D if necessary, that C is an irreducible complex-analytic
variety such that the complex dimension of C equals the real dimension of W.
Moreover, C is smooth at smooth points of W N G". Nowp,: W — R"is a
submersion at x € W if and only if the real n form p¥,(dx; A --- Adx,)
vanishes at x. Consider the projection p-: C — C” defined by p(zy,-- -, zy)
= (zy,---, zy) extending p, |y - Then clearly p%, (dx; A --- Adx,) =0 if
and only if pf(dz; A --- Adz,)(x) = 0. Let H be the union of the singular set
of C and regular points of C at which p. fails to be a submersion. Then,
SN G =(HnN G U Sing(W N G") which clearly yields (¥) if we know that
H is a complex-analytic subvariety of C.

To show that H is a complex-analytic subvariety of C, We resort to the
Coherence Theorem of Oka and Theorem A of Cartan-Oka (cf. Gunning &
Rossi [9]). Consider the sheaf mapping ¢: 0 — 0F, 0. denoting the reduced
structure sheaf of C, defined by

3 3
¢(g1,"'ag1v) = (<dFla 818—21‘ + .- +8Na>,

3 3
...,<dFk’gla—21+...+gNa>)’
where the pairing between 1-forms and vector fields is defined by
i i dJ i
<wla—21 + .- +wNa—zn, gla_zl + .. +gN8—zn> = w8 + - Twygn.

Clearly ¢ is a morphism between coherent sheaves. Denote the kernel by #. %
can be regarded as a coherent sheaf of restrictions of local holomorphic vector
fields on D to C which are tangent to regular points of C. Since % is a
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coherent subsheaf of ¢ we can define the coherent subsheaf A"F of A" 02
At a regular point z of C, p.: C — C” fails to be a submersion if and only if,
under the natural pairing of n-forms and n-vector fields, we have

(dzy A +++ ANdzp, o0 A - Apy(z) =0

for all holomorphic tangent vectors v,,---,uv, of C at z. By Theorem A of
Cartan-Oka, (A"%), is generated by I'(D,A"% ) since D is Stein. It follows
that H is the set of common zeros on C of {dz; --- dz,, h), where & tuns
over all holomorphic sections of A% on D. Hence, H is a complex analytic
subvariety of C. This finishes the proof of the lemma.

Continuation of proof of Proposition (3.2). Recall that U is an open subset of
X, a7\ U)yNM=M" =U,_, M, 7|, is a submersion at some regular
point, and E is the union of singular points of .#’ and regular points of .#’
at which # fails to be a submersion. By the preceding lemma, E is a
real-analytic subvariety which obviously does not contain any component of
#'. Recall also that the bundle V' = U, . yV, is obtained by taking V, = C-
linear span of .# ,. We assert

(#) There exists a nonempty open subset U’ of U and a finite
number of subsets S;,-- -, S,, of #’ N 7~ }(U’) such that

(i) each S, is a locally closed real-analytic submanifold (possibly discon-
nected) of 7~ }(U"),

(ii) =g is everywhere a submersion,

(i) A Oa N U'Y=S8,U--- US,.

We now set forth to prove (#). Let E =U, _,_,E; be a decomposition of E
into irreducible components and assume E’=U, ;. E; is the union of
irreducible components containing the branches of £ N Reg(.#’). By Sard’s
Theorem 7|z - Reg.ary 18 DOt a submersion at any point. Hence #(E)) is a
closed semianalytic subset (in the sense of Lojasiewicz [17]) of U of measure
zero. Define U, = U — w(E’). Then 7|gey 4y nn-1(v; 18 €VErywhere a submer-
sion. We shall choose some U/ C U, to be determined later, and define S; by
S, = Reg(A")Nn 7~ (U"). On Uy, let Sing(#") N7~} (U) =V, ,,T; bea
decomposition of Sing(.#") N #~X(U,) into irreducible components. For each
T, either #(T}) is a closed semianalytic subset of [ or « is a submersion at
some regular point of 7,. We arrange 7, such that « is a submersion at some
regular point of 7; ifand only if 1 < i< g.Nowletl << gq. 7|;: T, > U, is
not necessarily surjective. Let 7,” be the union of the singular set of 7, and
regular points of T; at which 7|, fails to be a submersion. #(T}) is a closed
semianalytic subset of U, (because of properness) and #(7;, — 7;) is an open
subset of U, dense in #(T}). Define F, = #(T;) — #(T, — T”). Then, on each
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connected component @ of U, — F}, either 7|r -1, maps T, N 7~ }(2)
properly and surjectively onto @ or 7, N 7 }(Q) = &. Applying Sard’s Theo-
rem to the mapping 7|ge, - Reg(7;) — U; we obtain then a closed subset E
of measure zero of U, — F; such that 7|gey 7y a1 — - F) 1S everywhere a
submersion. Since the boundary of each € in U, is contained in F,, clearly
F, U F, is a closed subset (of measure zero) of U,. We now define U, = U, —
Uicicg(FUF)=U, ., m(T). For U’ C U, to be determined we define
S, = Reg(T,) N #~}(U"), etc. It is now clear that one can go on by removing
step-by-step the singular set of irreducible components of the preceding
singular set in order to obtain open sets U, U}, U, - -, U, all derived from the
preceding set by removing a closed (semianalytic) subset of measure zero until
we obtain the last open set U’ = U, and the closed real-analytic submanifolds
S, 1<igm,of 7r‘1(U ) on which 7’|s,- is everywhere a submersion. Obvi-
ously #' N o N U')=S,U---US,.

Propositions (3.2) will now be proved by picking some point x € U’ and
some open neighborhood U, of x contained in U’. Let x & U’ be a point such
that ¥V, is of maximum dimension among points on U”. Suppose {v,,---,v,} is
a basis of V, with v, € # . Each v, is contained in one of the pieces S,
1 <j<m. Since mlg: §; > U ’ is a submersion it follows that there exist
vector fields v,(y) defined for y sufficiently close to x such that v,(x) = v,
1 < i < 5. For y sufficiently close to x, say y € U,, {v,(y),---,0,(»)} are
linearly independent. But since dimcV, < dimV, it follows that V|, is an
s-dimensional complex vector bundle generated at each point by

{Ul(y)" Tty Us(y)}

4. The maximum principle for fourth-order radial derivatives

(4.1) The equality A°R__ . > 0 at maximal directions . The main objective
of §4 is to prove the vanishing of fourth-order radial derivatives ¥ 'R 47,5 for
any maximal direction a of holomorphic sectional curvatures and any real
tangent vector n at x = «(a). As was explained in the introduction, we know
VIR yzaz for 1 < i < 3. We will first prove A’R 4,5 > 0 and then compute the
difference between A’R and SWR__ . the averaging operator of
fourth-order radial derivatives introduced in §1, (1.3). Then we will conclude
SR 454z > 0, implying V::R ogas = 0

Proposition (4.1). Let a be a maximal direction of holomorphic sectional
curvatures, m(a) = x. Then A’R ;. -(x) = 0.

Proof. (1) Without loss of generality we may assume that « is a unit vector.
Let {e, -+, e,} be a privileged basis of T}°(X), x = #(a), associated to the

LCLT
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unit maximal direction «. From §1, Proposition (1.2), we have

1
2A 1 = ZIRIIIJ‘ + pRyqiy — ZZ’RIIU' ’

i i
where p is the Einstein constant and the equality holds in a neighborhood
of x when R;;;(y), for y sufficiently close to x, is interpreted as
R<e,~(y),m, ek(y),é7(7)> with e,( y) obtained from e; = e;(x) by paral-
lel transport along geodesics emanating from x. Letting 1 be a real tangent
vector at x, we have, at x

1 2 2

EARITIT.‘I]‘I] = 2EiR121j,nl -4 Z RlTpﬁRﬂpP,nn - 42 ’Rﬁij,n! .
i pPEH i

Here we have used the equalities of §2, Proposition (2.2.1), at x and the fact

that lem(x) = 0. It follows that at x,

2
8 A‘Rllll n'q Z RllppRllpp mm Z |R1L'j,n|
PEH i
R
_ _ Mng _
- 2 Z Rllp;’?,'qn |R11U 'ql
pPEH i,
Since X is Kahler-Einstein, we have 2, R;y,;,,, = 0, giving
> Ritppam = ~Ritnigy — 2z Ritggom = - X Riiggm atx.
pEH gEN gEN

Hence, we obtain the inequality

1 Ry11 2
(*)0 §ARﬁqz7,nn = _lzlli Z Rﬁqﬁ,nn - Z |Rﬁ[j,'q| at x.
geEN i.j

(II) We claim that the only possible nonzero terms in the summation
X, |Ryi;j* are of the type |R1,,.|* In other words, we have

Lemma. For any real tangent vector v at x, we have

(1) Rigyj, =0 forl <j<n,

(i) Ryg,5., = 0 forp € H,

(ili) Ry1y9, = 0 forg € N.

Proof of Lemma. To prove (i) and (ii) we consider the Taylor series
expansion of Ry1;7 along geodesics issuing from x. Let y(¢), —8 < < §, bea
geodesic parametrized by arc length such that y(0) = x, ¥(0) = n. We know
that

1 .
Rini(v(1)) = Rygpa(x) + Ri1i1 ,m,m(x)t“ + - with Ryqpg gy < 0
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by the maximality of Rj3(x). Recall that v/R;;;3(x)=0 for 1 <i < 3.
Consider the expansion

R<e1+se |t e + e, e + ee, >(y(t))
() = R1111(Y(t)) + 2sReij(y(t))
(4R11” + 2ReR1111)(Y(t))

Now choose ¢ = ¢2 and change e; to e’ ej for some real  so that Ryq;;,(x) is
real and > 0. We have

1
1+ 8)2

R<e'1 t+ee;, e +ee ;e +ee, e +ee >(Y(t))

_ 1
1+ %)’

From the fact that Rj;j(x) = Supgeqio ) Regez and comparing the Taylor
expansions of the denominator and the numerator, we obtain immediately

ij‘n(x) =0 for j= 1 (1)
To prove (iil), Ryjpp, =0, we also use (*). Choosing j=p € H in the
expansion (*) and setting ¢ = ¢ for ¢ > 0 we define

F(t) = R(ey + t%,,e, + t%,; e, + 1%, ¢, + 1%, )(y(1))
= Ryni(¥(?)) + 2ReRypy;(v(1))¢°
+(4R 5,, +2ReRy;; ) (v(1)) - 12° + 4Re Ry, (v(1))
+ R, (v(1)) - 1*

We have Ry13; ,(x) = 0 and R ;(x) = Ry;,;(x) = 0 (Proposition (2.2.1)), so
that

F(1) = Rypia(x) + 0(1*) + 0(1°"2) + 2R pyp(x) - 22
+(4Ry1,5 (%) + 2ReR 5 . (x)) 1271 + O(£371) + 0(147).
Now choose o = 0.9. We get
F(t) = Ripyp(x)(1 + 26'%) + (4Ryg,5 ,(x) + 2Re Ry, (x))12% + 0(£2%).
By comparing the Taylor expansion of (1 + £2)?, ¢ = 1%%, and that of x(¢), we
obtain from F(#)/(1 + t*%)? < R 3;7(x) the inequality
4Rﬂp’7,n(x) +2ReRy;;,(x) <0

Without loss of generality we may assume Re R, ;,; .(x) > 0 (by some change
e, e %e ») SO that

(Rﬁﬁ(x).‘*' O(*) + (2R )(£2) + 0(1%)).

Ruppm(x) < 0.
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Since the same inequality applies to the geodesic y with orientation reversed
we have also Ryq,;_,(x) < 0, giving

Ritpp(x) =0 (i),
Finally,

Riz,z,(x) =0 (iii)
follows immediately from Rz, (x) = 0 and the fact that X carries nonnega-
tive holomorphic bisectional curvature, so that R;j,,(x) is a minimum Rz,
¢ ¢ e T X). '

(III) The equations Rjpi,(x) =10, (1) Ryp;(x)=0 for j>1, (i1)

Ri1,5.,(x) = 0 and (ii}) Ry,;,(x) = 0 can now be used to yield the estimate
from (),

1 Riq7 2
(+) FARmLy > ____3111 Y Riiggmn— 2 |Riipgn| atx.
gEN PEN
geEN

In order to finish the proof of Proposition (4.1) it suffices to prove the
inequality, for each g € N,

R 2
(#) ;11 Ritgq,my 2 Z |Rﬁp«7,nl at x.
pPEH

In fact, from the discussion of §1, (1.3), A’R;7;7(x) is the average of AR 717 oy
over the unit sphere S}°( X) of T}°(X), up to a multiplicative constant.

(IV) To prove (#) we apply the Schwarz inequality. Let y(¢), —8 <t < §,
denote the same geodesic as above. Then

Rliqt?(y(t)) = %Rliqﬁ,nn(x)tz + oo
On the other hand, for any p € H
Rigg 1
Rlipﬁ(‘Y(t)) = %(X) + Elepﬁ,nn(x)tz t+oe

By the Schwarz inequality applied to the semidefinite Hermitian form H,(§,{)
= Ryzee(v(2)) at (1)

2
|Ripg(Y() | < Rugyp(¥(0)) Ryzg(¥(1)),

yielding

R.- 2 _ Rypg R.- 2

| Rispg (Y(O) | < ZIE () Ry ().

But Ry3,,(x) = 0 and Ry7,,(v(?)) = Ry1,5,(x)t + - - -, so that by comparing

the Taylor expansion we have immediately

2 Ry
(#)0 lRlqu,n(x)l < 14111 (X)Rﬁqa,nn(x)‘
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(V) At first glance (#), is not strong enough to yield (#) unless 5#= 5£, is
at most 2-dimensional. However, the estimate (#),, for e . € A, fixed,
lle Il = 1, is true for any e, € 5, of unit length. This means that, if we fix one
privileged orthonormal basis of T}°( X) associated to a, (#), can be applied
to X, c ya,e, in place of e, for any (a;, - -, a,) such that El,eHlal,|2 =1 1In
general,

Z apRlipﬁ,n(x)

PEH

< (MR ][ )

PEH

In particular, if we choose a, = R then

11pg,7p

2
2 Ri717 2
[ 2 IRupen] (A28 Rt 0] Z i)
pEH pPEH
yielding
2 Ryig
Z |R11p¢7,n(x)| < 211 (x)Rﬂqq,nn(x)’
pEH

an equality even sharper than the required inequality (#), proving Proposition
4.1).

(4.2) Comparing S®R_. . and A’R__... Recall that from §1, (1.3),
S™R ,zaa(x) was defined by

S(4)Raﬁa&(x) = C4f V:Raﬁaﬁ(x)’
U]
where ¢, is a positive constant, i a real tangent vector of unit length, and the
integral is over the unit tangent sphere with the canonical metric.
Recall that from Proposition (1.3) we have the formula

4 =
(*)0 6S¢ )Ra&aa = Z Z RZEaE.ii’jj’
i,joES,
where S, denotes the symmetry group of order 4, and Ri;.,;; is the

fourth-order covariant derivative of R, obtained by formally permuting the
last four elements using o. Our main result in this section is the following
proposition.

Proposition (4.2). Let o be a maximal direction of holomorphic sectional
curvatures, w(a) = x. Then SWR . .(x) = AR _z.(x) = 0. Hence
ViR qzoax) =0 for 1 <i <5,

axad axod

adad
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Proof. (1) To prove Proposition (4.2) it suffices to show that
SR ya0a(X) = AR yaea(X).

In fact, since V, R z,5(X), 1 <i< 3, and is a global maximal direction of
holomorphic sectional curvatures, we have

V:Ra&a&(x) <0.
Integrating over % of unit length, we have

SR zea(x) < 0.
From Proposition (4.1) the equality S“R ;. +(X) = A%R ., -(x) would imply

axan axanx

S®R ,z0a(x) = 0 and hence VR z,(x) =0 for 1 <i <5 and for all 9 €
T.(X). .

(II) From the equality (*) we have
(*) 6S(4)Raaaa =4Re ZRaaaa,iijj+iijj+ijz’j+ijji+ijij+ij'ji'-

ij

To see this, there are 24 terms on the right-hand side of (), of the form

i**x_ jxxx%, jxx=x or j*=*x* in the order of differentiation. By interchang-

ing the roles of i and j in the same terms of the expansion of (), we obtain
the expansion (). Furthermore we have the equalities

R R R =R

adad@,ijij adad,ifji? aqad,iijj adad,ijij*

Recall that by our definition of A*> we have
2 —
A RaEaE - ZRaaaa,ifjj+iz’jj+iijj+iijj~
L,
Our approach of computing S®R . . — A’R ... at x is by converting all
terms t0 X, ;R 545, To start with we fix at x a privileged system of
orthonormal basis of 7}(X) associated to the maximal direction a. Then,
at x,
Riaiiij;= Rmnay + 2L R iRz — 22X Ripn iR,
p p

+ X Rim1 iR — LRt aR, -
" p
Summing up over j we immediately have, using the Finstein condition,
Y Rinii = LR
J J
In particular, we have

YRt = LRt YRt = LRt
i i i\j

i.J
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where the second equation is obtained from the first by conjugation. Further-
more,

R = (Rﬂli,fi + 2  RiRyi — 22R1ﬁﬁR;ﬂif)
® ® I
= Rﬂﬂ,iijj + Z(ZRI,JITRlﬁif) - z(leﬁﬁRﬁn’)
n i B i
Summing up over i, we have, using the Finstein condition,
ZRITIT iiji = ZRlTﬂ,fijj'
7 1
In particular, combined with equalities above
2 Rintay = LRy = LRty = LRt
if ij i iy
so that
2 -
ARinir = 4 Ryqinij;
i
(Hence the last term is real.)
(II1) From the expansion (x) for S¥R .. = S®R 1,1, we now have

6SPR 117 = 4(32Rmi,i.’jj +2Re ) Ryjjp, i + Re leiﬂ,ijji)-
i i, i,

Now we convert the last two terms to 2, ; Ryj17 77+

Rlili,iﬁj = (Rllll iij + 22Rplll i ji 2ZR1;111 idji + ZRllll pRm_/l) ]

J

= Rﬂﬁ,iijj + 22R;¢Bﬂ,inlﬁjl_' + zzRyfli,iRlﬁjf,j

_22Rlplll_/ ulji 22R1y111 ulji,j
M

+ ZRllll p_/Ru_L_u + ZRllll pRu_.Ui J*

Summing up over i, j, and applying the Bianchi identity and the Finstein
condition, we obtain

ZRlili,ijz_/ ZRllll iljj +2 Z R;Llll l_[Rlp._[l

i.j ivj

—2 Y RygiijRuj + ARy
i/
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From previous information we know the first term is real and equal to
%Aleili’ SO that at x
2Re ZRlili,ijzj 2ZR1111 gig T 4 Re Z R 111, iR
i i)t
—4Re ). RipiijR i
L jop
Regrouping the terms we have, at x,

2Re ) Ryqj; djif = 2ZRuu gt 2 > (R JD1Lij R;ﬂli,]i)Rlﬁﬁ
i i

+2 Z (Rymt.ji — Rygnij) Ruji-
i jss
We compute the commutation terms inside the parentheses to obtain
R — Ranji= LRmiRe; — 2L RymiRo; + L R41R )

The other commutation can be computed by conjugation, yielding at x

2Re ZRﬁﬂ,ijzj 2Z.Ruu gt 4Re Z Rllll.Rp.llj‘
i i j.
2
~8Re ) Ryl R;Jij’l + 4Re Y. Rypy1| Rygj| -
ij.u i
Here we have used equation (b) of Proposition (2.2.1), i.e., Ry;; = 0 unless
i =j =1. We can furthermore regroup the commutation terms according to
whether p = 1, p € Hor p € N, yielding
2Re ZRlili,ijij - 2ZR1111,iijj'
iJ i,f
2 2
= 2 X (4Rm1 —8Ryy,, )| Ryuj| + 4Ry X LRl
i,j pEH gEN 1,j
Since R;;,; = 3Ry5;1 and R 5,; = O for all §, j,1 < i, j < n, we have obtained
2Re Y Ryqir ;= 22 Riai i
i,j iJ
(IV) Similarly, we compute
Re Y Rini i — LRt
ij i.j
by commutation at x,
Rimitji = Rungajiy + 22&111,,‘;1(1,—4; - 22R1,ni,ij,Jﬁ

+ ZRllll p.j imji ZRllll mRy.jﬂ
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Summing over i, j and using the Einstein condition we have
2Re ZRITIT,ijjf - Z_ZRﬂﬁ,,-;;, = 4Re Z R n11,:jRz )i
i i [t
—4Re Z Rlﬁﬂ,ifR
i f
The same computation as in (III) yields the equality
Re Y Riniiji = LRmts; = LR
) i,j i
From this and equalities in (IT) we obtain at x
6S“R 1 = 24ZRITIT,H_/j = 60"Ryqy1,

i

yjjf'

proving Proposition (4.2).

5. The maximum principle for sixth-order radial derivatives
and computation of A’R _ .

(5.1) The major objective of this section is to extract further zero-order
information on the curvature tensor with respect to a privileged orthonormal
basis relative to any maximal direction a at any point x € X. (Results of this
section will be used in §6 to prove the crucial fact v, R = 0 for most a € .#.)
In order to do this it will be necessary to make use of gradient terms arising in
the expressions of SWAR__ (x) and A’R__ .(x). Since the computation of
these two quantities resemble the computation of S“R . (x) and A’R  .(x),
which were carried out in the last section, we will be contented with sketching
the steps of such computation, and indicating only the necessary modifications
and new methods of applying the computation.

Keeping notations as before, we will fix some x € X, some maximal
direction @ at x and use a fixed privileged orthonormal basis of T0(X)
adapted to a. Recall that T1%(x) = Ca ® 3, ® 4,; the index set of the basis
for #= 3, is denoted by H and that #"= .#, is denoted by N. The indices
will be denoted respectively by p, p’,--- and g¢,q’,---. For the sake of
simplicity we shall say that a curvature from R, ., for example, is of type
Ry;,p €tC., meaning that the indices p, g appearing in terms of type Rixx«
can take arbitrary values in H and N respectively. We can therefore group the
curvature terms into those of types Riqi1, Riip, Ritppe - s etc. We shall say
that a curvature term R;;; is of type Ryxsx UP tO conjugation and permu-
tation of R,;; can be obtained from Ryss by conjugation, the allowable
permutations of indices due to symmetry and by substituting any p and ¢
indices by arbitrary indices in H and N respectively. Our major objective here
is the following result on the structure of R.
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Proposition (5.1). Withx € X and aeM . fixed as above, the only possible
nonvanishing terms of R;;; are those of the following types up to conjugation and
permutation:

Rlili , R R R and R

119> Rppaz> Rpppps Ragaz 1p4p°

Proposition (5.1) says that almost all nonvanishing curvature terms are of
bisectional type R,z k', ! =1, p, g, with the possible excep.ti‘on of Ry;,5, are
in actual fact nonzero in many cases. It contains, in addition to results of
Proposition (2.2.1)_the fact that all c1‘1r‘vature terms of ‘tyl?es R,;p5 R,z45 2and
R, are zero. It is somewhat surprising that the vanishing of such terms can
be derived from computations related to R;y;y since all the information in
Proposition (2.2.1) obtained from variational inequalities are on terms associ-
ated to the maximal direction e, = a. For the derivation of Proposition (5.1)
we need the following lemma.

Lemma. Suppose second order covariant derivatives of Ryi,; vanish at x.
Then, all curvature {ernfs of' types .Rpﬁﬁ’ R, .5 and R‘f‘7‘”‘7 vanish. .

Proof. By polarization it suffices to prove the vanishing of the given terms,
i.e., the indices p and g can be assumed to carry the same meaning. Under the
hypothesis of the lemma, we have, at x,

M Ritpg55 ~Ritpgpr = 0;

() Riip5.07 ~Ritpz.3,= 0

(ii1) Ry1p5,5 ~Ritpg,qp =

We compute these differences by commutation separately.

®

Riipg.pp ~Rilpgpp = ZR;Jpz?Rlﬁpﬁ - ZRlﬁpaRquﬁ
[ [
+ ZRITMRM‘LPI’ - ZRﬂPl_’-R#‘_IPI_"
[ [

From Proposition (2.2.1), statements (c) and (d), we have the vanishing of
curvature terms of types R,;; and Ry}, so that
0= Ritpz.pp ~Ritpgpp = ~RuippRppps-

Since Ryi,; = $Ri1;1 # 0, we obtain immediately R,5,7 = 0. Similarly we
have

(i) Riipz,4 ~Riipgaq = ~RiippRpg49
(1) Riipgp5 ~Ritpggp = ~RiippRpgpg
It follows therefore, under the hypothesis of the lemma,
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Our next step is therefore to prove the vanishing of second order covariant
derivatives of R;,.. Recall that from the computation of S®R 3,7 = ARy
= 0 we obtain at the same time the vanishing of R,j,,, for any real tangent
vector n at x. The term R,j,; , appears in the expression

2
ARITIT,nn = Z |R121j.nl + Rliﬂ,m;
iJ

2 ——
-2y | Ryiijq l — 2Re ZRliij Ryg;;, -
ij i
Similarly

2
ARﬂli,nmm = ZlRlilj,nn‘ + Rliﬁ,nnnn
i

~2% | Rygjjn| — 2Re 2 R11ij R1tij,
ij iJ
Here we have already used the facts Ry;;, = Ryj;;, = 0 derived together with
the vanishing of AR;y7,,. It is plausible from the preceding expression that
the vanishing of ARf1,,,, can be used to derive the vanishing of second
order radial derivatives of R1,,. This is in fact the case. For this purpose we
are going to compute the sixth order term S®AR,;,7 in the same spirit as in §4
for S®PAR;1)7 = A’Ry5;1. Notice that the equation R, . = 0 does not imply
the vanishing of second order covariant derivatives. However, if instead we
compute the expression
A3RITIT = ZBARITﬂ,(aE-l—Ea)(,BE+,§,B)’
a,

then the gradient terms attached to R,y; will be of the form |Ryy;; .el%,
|Ry1; j‘aﬁ|2, etc. Therefore we will further compute the commutation from
S@AR 1y to ARy = SPAR qy1.

We will now collect the computational results into the following two
propositions.

Proposition (5.2). At an arbitrary x € X and for any o € M# ., we have, in
terms of notations used before, SAR ;1 = S©Rypy1 = 0, so that v Ryjy7 = 0
forl <i<g?T.

Proposition (5.3). At an arbitrary x € X and for any o € # , in terms of
notations used before,

A°Rinyt = SPARyy = 0.
This implies in particular that for any real tangent vector n at x
Riipg.ap = Ritpg.af = Ritpgap = Ritpgap = 0
forpe H ge Nandl < o, < n.
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(5.2) Sketch of the proof of Proposition (5.2)—S®AR 1,1 = S©Ry5,7 = 0.
By the same argument as step (I) of Proposition (4.2) the equality S©R ;;; = 0
will imply ¥R q;; = 0 for 1 < i < 7. The proof of Proposition (5.2) therefore
reduces to the following two statements.

Proposition (5.2), Part . Notations as above, for any real tangent vector 1
at x we have AR 17 ... > 0 so that in particular S®AR;1;1 > 0.

Proposition (5.2), Part Il. Notations as above, we have at x S®R 17 >
S®AR ;7 = 0.

For the derivation of the first inequality we need the following lemma for
which we include a proof.

Lemma. Atx, foranyi, j,1<i, j<n, foranyp € H, g € N and n any
real tangent vector at x, we have

)] leli.n = Rﬂij‘,n =0,

(i) Ryg1jqn = 0,

(1) Ryg,q.9 =0

(iv) Rﬁpﬁ.nn = Rlz"lﬁvvm =0.

Proof. From the proof of Proposition (4.1) (see formula (*), step (III)
where we dropped the first term and obtained an inequality) we have

1 1 2 Ri31 2
(#) §AR1111,1,1, = f:llelj,nl + 12111
IVJ

Z Ritggmm — Z IRITPEJMI .
gqEN pEH
gEN

From the last formula of step (V) we have at x

R
l4,lll Rlqu nn Z \Rllpq n‘
pe
From these we derive

1

8R1111 7)71 EiRlllj 'q‘ + Z IR11P471|
pPEH
qEN

Recalling formulas (i), (i1), (iii) of step (II) of Proposition (4.1), we have
Rﬁli»’l=R =R =0 fOI'lSl',an.

11pp.y 1147.n
Since ARy141,,, = 0 by Proposition (4.2), we thus obtain
Rijm=Ruajn =0,

proving (i) of the lemma.

To prove (ii) we need only to consider the case j > 1. Let y(¢), —8 < t < 8,
be a geodesic parametrized by arc length such that y(0) = x and y(0) = 7.
Since v, Ry1;; = 0 at x for 1 < i < 5, we have

1
Rim(v(2)) = Ryppy(x) + ’6_!V6]‘31111(x)"6 + -0 = Ry (x) + 0(1°).
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On the other hand, we have
R<e1 +ee, e +ee ;e +ee, e +ee >(y(z))
() = Ryi(y(¢)) + 2eReRyg;;(v(1)) + e2(4R;q;; + 2ReRy;;)(v(¢))

+e (4ReR1w(Y(t))) + £4ij( (2)).

Substituting ¢ = ¢ and changing e . to e O  for some real 4 so that Rygy;,.(x)
isreal and > O (recall that Ry3;;,, = O at x for j > 1), we have, for j > 1,

1 -
(—1—4_;2—)2R<e1 +ee;, e tees e tee, e +oee; >(y(z))
1
" (Ryziz(x) + O(1°) + 2Ry3y;.,,(x)1° + 0(29)).

But since the holomorphic sectional curvature of (e; + ee )/ V1 + e at y(¢)
is smaller than R,y,7(x), we see immediately that Ry, ;,,(x) =0

Equation (iil), R;1,;,, =0 for all ¢ € N, has already been proved in
Proposition (2.2.2). To prove (iv) we use the same expansion (x) above. We
choose j = p € H and set ¢ = ¢t? for ¢+ > (. By taking ¢ = 1.5 and comparing
expansions in terms of 1 we obtain

4Ry1,5 4n(x) + 2ReR 55 . (x) <0

By replacing e, by e'le , for a suitable real ¢ we may assume that
ReR ;i5.49(x) > 0, so that

Rﬁpﬁm(x) < 0.
Since Ri111, (%) = Ry1,5.4,(x) = 0 for all ¢ € N, from the Einstein condition
we obtain X, ¢ g Rz 5 4q(x) = 0, giving

Rﬂpﬁﬂm(x) = Rlﬁlﬁ.m](x) =0

and completing the proof of the lemma.
Using the lemma one obtains immediately from the formula of Berger

1
gARlTlT.mmn Z |R1111 nnl +3 Z 'Rllpq nnl

(##) Zig
Ring 2
Z p) Rﬁqaﬂmvm -3 E lRlipq,nnI
qEN peH

By the same application of the Schwarz inequality as in Proposition (4.2) we
can show that the term inside the bracket is always nonnegative, proving
§ARq11 pny > 0 and hence the integrated form S®AR, g5 > 0, proving Part I
of Proposition (5.2).
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To prove Part II we need only to show S©R, ;7 > S®AR;1;7- This is done
by the same commutation technique as in Proposition (4.2). Since covariant
derivatives with both barred and unbarred indices are involved, we will need a
conversion of our knowledge of radical derivatives into that of general co-
variant derivatives. We shall only indicate the procedure by an example. It will
be necessary, for example, to use the fact that all second order covariant
derivatives of Ry1,;, p € H, vanish. By the preceding lemma we know that all
second-order radial derivatives of Ry1,;, p € H, vanish at z,1.e., Ryg,;,, =0
for all n € T (X). By polarization (Proposition (1.4)) we obtain, for 1 < a, 8
< n,

Ri1pp.08 = Riipp.a = Ritpp.ag + Ritpp.fa = 0-

To prove V *Ryy,; = 0 it suffices therefore to show Ry1,5 .5 = Rit,5 5. = 0,
which can be obtained by the formula for commutation and our knowledge of
zero order information on the curvature tensor.

The rest of the proof of S®R 1,7 > S®ARq;7 > 0 follows the same line of
thought as in Proposition (4.2) and will be omitted.

(5.3) Sketch of proof of Proposition (5.3)—A°R,7,; = S®AR;7;1 = 0. From
Proposition (5.2) one can derive the vanishing of a number of second-order
radial derivatives of the curvature tensor. In addition to the list given in the
lemma, we obtain from the actual expression (# #) of AR 111 yyyy (recall
ARy117 gyyn = 0 for n € T (X)) the vanishing of Ry;;,, and Ryy,;,, for
1<i,j<gn, pe Hand g € N. Recall that for the derivation we needed the
vanishing of ¥ zRﬁpa. For this purpose we need Proposition (5.3). First we
write down the following simplified formula of A’R,5,7 using our knowledge of
certain vanishing covariant derivatives as indicated at the end of (5.2):

(##) 28R =2R & ¥Ry~ L L (IRl + Rigpoil).
qEN k,!peH
gEN
The derivation of this formula is very much the same as the formula for
AR1111 yyny 1 (5.2). Here the covariant derivatives associated to Ry;; are
discarded because one can derive the equality ¥V ?Ry;; = 0 from Ry;;.,, =0
for all 7 € T(X), by the argument of the last paragraph of (5.2). To prove
Proposition (5.3) it suffices therefore to show A’R;5;; = 0 and A’R g < 0.
The derivation of A’R,1;; = 0 follows the same pattern as the derivation of the
inequality S©R;5;; > S®AR;;;7 > 0. Namely, we compare AR7; =
S@A?R 1,5 against S®AR 1,5 by the formula for commutation. (See the proof
of Proposition (4.2).) In the present situation we actually obtain A’R 77 =
S“AR; 1,7 = 0 directly. The derivation of A’R;;,; < 0 is more involved con-
ceptionally. It suffices to show AR;q,,,, < 0 for all 5 € T(X). We derive
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from Proposition (2.2.2) (which gives ARz, = 0) the expression

ﬂqﬁ
2 Ryt
AR 1g,m = z lRlﬁpfl,nn_ 2 )y Rypqg.m
p.reH pPEH
2
= |Rizgs| — RuzzeRegq

1Ell=1] ,eH m
teH

Note that the term inside the bracket in the integrand vanishes at x by formula
(e) of Proposition (2.2.1). Call this expression §,(§) in a neighborhood of x.
(As usual the vectors e, and £ in a neighborhood of x are understood to be
obtained by parallel transport from x of e (x) and £(x) along geodesics.)
Recall that in Proposiiton (2.2.2) § (£)(x) was interpreted as the discriminant
of some quadratic polynomial associated with R;1,;. In fact, we defined at x

G(e)=R|e, +e, e, +ef, e, + ) Ce, e, +e) Ce,l,
reH reH

and 8 (§) is the discriminant of the coefficient of ¢? in the Taylor expansion of
G(¢) in &, regarded as a quadratic polynomial in the variables C,, r € H. This
quadratic polynomial is positive definite (since R;1,; = 0 and G(&) > 0 be-
cause X carried semipositive bisectional curvature). The vanishing of the
discriminant then implies the existence of a nonzero set of coefficients (C,), c
such that the coefficient of ¢ in G(e) vanishes. In fact, this is given by the
formula C, = —(Rg,;/Ri1,-)(x). Fix a geodesic y() passing through x with
¥(0) = x and ¥(0) = n and define now C(¢) = —(Ryg,;/Ry1,;X¥(?)) obtained
by parallel transport. Consider the function for ¢ > 0

F(1)= R(e +1%, e, + 1%, e+ 32 Clt)e,, e,
reH

+° L G1)e)(r(1)) > 0.
reH
Writing Ryg, .z, for Ryg,:(v(1)) etc, the coefficient of t2° in the expansion of
F_(t)in ¢t is given by
|Rugor|

147
K(1) = Rygo(t) = T 2220 (0).

reH 11r7
We note that K(0) = —4/Ry;1(0), 8,(§) (0)=0 and that K”(0) =
(—4/Rﬁﬂ(0))vn28q(§)(0). To finish the proof of Aleiqa(x) < 0 it suffices to
show K”’(0) = 0. The proof of this follows the same line of argument as in the
lemma of (5.2). Namely, by choosing appropriate o, we conclude successively
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the vanishing of certain coefficients of powers of z. The starting point of this
algorithm is the estimate Ry,.(?) = 0(1%). To see this from the expansion
(##) of AR1,5,,,, and its vanishing at x we have V;Rliqq(x) =0 for
0 </ <4, yielding immediately Ri7 .(¢) = 0(t%) since Riz5(x)=01is a
minimum of bisectional curvatures. The rest of the argument is routine and
will be omitted.

The vanishing of A’R;7;; and A’Ry3,; < O imply the vanishing of v ’R,3,,;
by the expansion (# #)’ of A’R 1,7, which in turn implies the main result
Proposition (5.1) of this section, as was indicated in (5.1).

6. Invariance of R along integral curves of vector fields
of maximal directions

(6.1) We will make use of our preceding knowledge of the curvature tensor
and first-order covariant derivatives to show that there is a nonempty open set
U such that for any x € U and any a € .#,, V,R(x) = 0. It follows im-
mediately that if y(¢) is a curve in U, y(¢) is a multiple of some &« € .#_,,
then the curvature tensor is invariant under parallel transport along vy. In order
to prove vV, R(x) =0 we first collect all information about first-order co-
variant derivatives at x. As usual we will fix x € X, a € .#, and use a
privileged orthonormal basis { e, - -, e, } of T.°(X) adapted to a = e;.

Lemma 1. At¢ x, VR;; = VR3;; = VRy;; = VR =0 forall pe H,
g€ Nandforl <i,j<n.

Proof. The only thing that was not already contained in Lemma 3 of the
Appendix, Step VII, is the equation VR;;,; = 0. To prove this consider the
expansion along any geodesic y(¢), —8 <t < §, passing through x with
v(0)=x and ¥(0) =n. Writing R,7;7(y(#)) = Ri;3(?), etc., we define for
c6>00gt<$é

F(t)= R(e1 +1%,, e, +1%,, e +1t%,, e + t"ep)(y(t))
= Rﬁﬂ([) + 4tGReRﬂl’7(t) + t20(4RlTpﬁ(t) + 2ReR1’711—;(1))

+41>°ReR,;,,(1) + t*°R 5, (1).

1ppp

Recall that from Proposition (5.2) and Lemma 3 of the Appendidx we have
Riy(t) = Rip(0) + O(¢%),  Ryppp(1) = O(7),
Rlﬁlﬁ(t)= o(r?), Rﬁpﬁ(t)= 3Ri;1(0) + O(#3).
From the maximality of R,1;7(0) we have
E,(1) < Ry (0) - (1 + £2°)%,
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Take any o > 0 and comparing the coefficients on both sides of the inequality,
we have
1+ 0(%) + 0(+°7%) + 2%° + O(17°7%) + 4°°7 'Ry, o + O(1%)
<1+ 2£%° + 149,
noting that R,,,, = 0 by Proposition (2.2.2). Substituting o = 0.5 we im-
mediately obtain Ry;,; . < 0. Applying the inequality to the geodesic y™(¢) =
y(—t) we obtain — Ry, . < 0 and hence R, , = 0, proving the lemma.
The main result of §6 is the following proposition:
Proposition (6.1). In the notation of Lemma 1, there exists a nonemty dense
open set U such that we have, at any point x € U and forany e; = a € #
ViR forl<i,jk,l<n.
Proof. By means of polarization it suffices to prove V(R j; for i, j, k,1 =1,
p or g, where p and g represent typical elements of H and N respectively. We
will first prove this for all types with one exception by using Lemma 1 and the”
Bianchi identity. First, we can classify curvature terms into groups of types up
to conjugation and permutation of indices:
() Ryjjz for1 < i, j k< m;
(i) R for p € H;
(i) R for g € N;
(iv) R forpe H, g € N;
(v) R forpe H, g€ N,
(V)R forpe H g€ N;
(vi) R, for pe H, g€ N.
Since this division is up to conjugation (and permutation of indices), it is
necessary to prove R, j;;; = R,j;;7 = 0 for all terms given in the list. We have
D Ryjjz1 = Rz, = 0, Ryjzx = Ry = 05

pPPP
99493
prrqq
ppPq

() Rppp51 = Rppppa = Ripppp = 0;

(i) R y705.1 = Ryzqz1 = Riggaq = 05

(V) R,5021 = Rypgzn = Rugpp.a = 0;

M Ryppz1 = Rigpp p 0, Ry5pa1 = Rpppig =0
(D) R 7020 = Rigpgg = 0o Rpgeg1 = I;q_p?l =0
(Vi) R 2551 = Rigpg,p = 0, Ryzpai ="

Everything is proved except for R, .1, because the only possible applica-
tion of Bianchi identity R ,;,.1 = R q,;, does not yield a curvature term for
which one can apply Lemma 1. To complete the proof of Proposition (6.1) it
suffices therefore to prove

Lemma 2. There exists a dense open set U of X such that for any a € A ,,
and for any m € T, (X), we have, in terms of a privileged basis at x adapted to a,
R = 0.

papg.m
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Proof of Lemma 2. 1n Proposition (5.1) we used the vanishing of ¥Rz 3
to conclude that R, .= R,; .= R,;,; = 0 at x. By the same argument it
would be possible to deduce VR ;. = 0, eic,, at x if we know ¥ 3R11p‘7 = 0.
But this would necessitate the computation of A*R,q;1. Instead we will show
that our knowledge of the structure of the curvature tensor (Proposition (5.1))
and additional knowledge on covariant derivatives is sufficient for proving
VR, ;.5 = 0 at x wherever a € #’, where 4’ as defined in (3.1) is the union
of components #;, 1 < i < i, such that #| , is a submersion at some smooth
point. This contains in particular Lemma 2. To do this it suffices by continuity
to prove VR ;.. = 0 at x for a € Reg #, — {a € .4, where 7 fails to be a
submersion at a} for 1 < i < k. For any such a € # there exists a smooth
vector field &(y) defined on a neighborhood W of x such that &(x) = a and
a(y)e A, for each y € W. At y € W we have the orthogonal decomposi-
tion

T} = Ca(y) @ #y,) @ Hig,)-

Since the dimension of 5,  and A4}, are both independent of y, as a
consequence of the FEinstein condition or simply of the fact that the Ricci
tensor is continuous, the splitting given above for each y € W actually yields

an orthogonal splitting of the smooth vector bundle T'°(W) as
TYOW)=x(W)eoH#(W)aN (W),
where by definition (W) =U, ., Ca(y), etc. Fix a geodesic y(1), —8 < ¢
< 8, y(0) = x through x lying in W and denote by a(y) € T,"°(X) obtained
by parallel transport of a(x) = « along vy. Denote by 7 the tangent vector
y'(0) at x. Fix some e, € 4, |leJ| =1, and denote by e, (y) € T,°(X),
¥y € v, the corresponding vector similarly obtained by parallel transport. We
write a(t) for a(y), etc. for y = y(2). We have the orthogonal decomposition
a(t) = a(r)a(r) + £(2) + §(2), with £(r) € H#,y, $(1) € Ny,
e (1) =b(r)a(e) +&'(2) +§'(r), with §'(2) € #,y, £'(1) € Ny
Here obviously £(0) = ¢(0) = £’(0) = p(0)&(0) = 0. We assert that

(%) b(1) = O(1?).
The estimate () will be used to study the behavior of R ,,,,(¢) for p € H and
q € N in order to conclude R ;- ,(0) = 0. To prove (*) recall that we have

Rﬁlq(o) = Rﬂlq,n =0
which means that

R(a(0), a0 a(0), 200 = O(¢2).
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Substituting the decompositions of a(7) and e (¢) into the preceding equation
and using the fact that

R(a(r), @0). &(0), ¥ +E00)) (ype Rygy for j > 1)
— R(a(0), &0 al0), ) (tvpe Rugy)

= R(a(1), E(1) + £(0), a(2), ¢'(1) + €°(1) ) (type Ry, i, j # 1)
=0,

as could be read off from Proposition (2.2.1) on the structure of R4, We see
immediately that

R(a(2), a(t), a(r), € (1))
= a*(t)b(t)R(a(1), a(t), a(1), a(z)) + 0(+?).
Since R(a(1), a(r), a(r), (1)) = R g5 > 0 for all 1, —8 < ¢ < &, we have
established the estimate ().

To make use of (%), let e, be a fixed unit vector in S and consider the
decomposition

e, (t) = c(e)a(r) +&"(¢) +{7(1), with £7(1) € Hy,y, $7(1) € Ny
Clearly, ¢(0)&(0) = ¢’(0) = 0. Then,
R{e,(1), €g(1) ¢,(1), (1))
= R(¢"(1), £'(1) . (1), (1))
+2R(c(r)a(e) + (1), $(1) , £7(21), (1))
+2R(£7(2), b(t)a(r) + (1), £7(2), (1)) + O(?).
From Proposition (5.1) on the structure of the curvature tensor we obtain
R(&7(1), $(1), £7(1), £'(1) ) (type R,g,7)
= R(&(1), £'(1), (), (1) ) (type Ryg)
= R($"(2), £'(1), £7(1), §°(1) ) (type R, 07)

= R(£"(1), £(1) . £"(1), £'(1)) (type R,,5)
—0

so that

R(e,(1), e,(1). ¢, (1), €,(1))
= 2b()R(£"(1), (1), £7(1), $'(1) ) + O(¢?).
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Notice that curvature terms of type R may be nonzero. However, by (*) we

have b(t) = O(t?), yielding

R(e, (1), e, (1), ¢,(1), e,(t) ) = O(1?),
hence R,;,;.,(0) =0, proving Lemma 2 and thus establishing Proposition
(6.1).

rlpg

7. Totally geodesic Hermitian symmetric integral submanifolds
and isometric decomposition of X

(7.1) Recall that by Proposition (3.2) there exists a nonempty open subset U
of X such that the bundle of maximal subspaces V =U, . V., V, = C-linear
span of .# , is a differentiable vector bundle on U. By Proposition (6.1), by
shrinking U if necessary, we can assume that for any a € # , x € U, we have
VRijui=0forl <, j,k, I <n, sothat VR, forall £ € V.. On U we now
consider the distribution ReV|, = {§ + & £ € V|, } of vector subspaces of
the tangent spaces. Our main result in this section is the following

Proposition (7.1). The distribution ReV|, of vector subspaces of T (X),
x € U, is integrable. Moreover, the integral submanifolds are complex, totally
geodesic and locally symmetric.

Proof. By the theorem of Frobenius, to prove ReV|,, is integrable, all we
need to show is that it is closed under taking Lie brackets. Since the metric on
X is Riemannian, for any smooth tangent vector fields Y, Z on any open set,

VyZ - VyZ —[Y,Z] =0.

It suffices for the proof of the integrability of ReV|,, to show that v,n" takes
values in ReV|, for any tangent vector fields , n° on an open subset of U
with values in ReV|,,. Fix x € U and let «,,- - -, a,, be a basis of V, consisting
of maximal directions. We may further assume, as in Proposition (6.1), that
there exist smooth vector fields a;(y),- - -, a,,(¥) in a neighborhood of x such
that a;(y) € #, and e;(x) = a;. Let v = y(¢), —8 < ¢ <4, y(0) = x, be any
integral curve of ReV|,, i.e. y(¢) € ReV,,, for each z. Then the curvature
tensor is invariant under parallel transport along y. In particular, if 8;(¢) is the
parallel transport of «; along v to y(t), then

4 R(B(r), B, (1), BD) =0

since V,,R =0 and v,,,B(¢) = 0. It follows that B(¢) is also a maximal
direction. In particular, B(¢) € V,(,,. Write

Bi(t) = Lay(t)ey(1),  a(8) = o;(v(1)).
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Write 7 = ¥(0). Then, at x, v,B,(t) = 0, ie.
Zaij(O)VnO‘j(O) + Za;j(o)aj(o) =0.

From the definition of f, it is clear that a,;(0) = §,;, so that

v,0,(0) = = La},(0)(0),

proving that v a,(0) € V,. Since 7 is real, we obviously have
v, (Rea,;)(0) € ReV,.

But this applies to any 7 = ¥(0) with vy an integral curve of ReV|. It follows
therefore that for any open U’ C U and any real tangent vector fields 5, 7’ on
U’ such that n(x), n'(x) € ReV,, we have

(%) v, (x) € ReV, forallx e U’,

proving in particular the integrability of ReV|,. Obviously the integral sub-
manifolds are complex because n € ¥, implies Jn € V, for the J-operator on
the complex manifold X. Finally (x) implies that v, v'(x) = v,n'(x) for the
Riemannian connection v’ on Z, from which it follows that Z is totally
geodesic, proving Proposition (7.1).

(7.2) The local foliation on U by locally symmetric complex totally geodesic
submanifolds Z_ is a strong indication that X is itself Hermitian symmetric. In
this subsection our contention is that each Z, is contained in a compact
Hermitian symmetric submanifold Z,. To be precise, we have

Propeosition (7.2). For each x € U there exists a totally geodesic compact
Hermitian symmetric submanifold Z . containing x such that Z_ N U = Z_ is the
integral submanifold of ReV|,, passing through x.

Proof. We will prove Proposition (7.2) using the theorem of Bonnet-Meyers,
which asserts that every complete Riemannian manifold of Ricci curvature
bounded from below by a positive constant is necessarily compact. Let » > 0
be less than the injectivity radius of X so that for any y € X, the exponential
map at y is a diffeomorphism on the Euclidean ball B(r) = B(0; r) on the
tangent space 7,(X), equipped with the obvious Euclidean metric. Without
loss of generality we may let U be the open geodesic ball B(x; r) so that Z_ is
nothing other than exp (B(r) N ReV,). We can step-by-step enlarge the piece
Z = Z, as follows. Define Z, = Z. We will define Z; in general as a locally
closed extendable submanifold of X, in the sense that there exists some locally
closed submanifold Z; of X such that Z, C C Z/. Suppose Z, is defined. Fix
¢ > 0 such that » + ¢ < injectivity radius. Choose a finite subset S; of Z; such
that for each y, € Z, there exists y € Z; such that d(y,, y) < & This can be
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done because Z, is extendible. Define
Zi+1 = U Ai+1(y)’
YES;
where

A;1(y) = exp,(B(r) 0 T,(2)).

We have chosen S, so that Z, C C Z,_ ;. We claim that Z,_, is a locally closed
extendible submanifold. By definition Z,,, is locally closed. To show that
Z,., is a submanifold locally, it suffices to show that for y, y’ € S,, either
A, ()N A, ()= B or 4,.(y) U A4,,,(y") is a locally closed connected
submanifold extending both A4,,,(y) and 4,, ,(y"). To prove this one has to
rule out the possibility that they intersect each other in a subset of smaller
dimension. If 4, ;(y) U 4,,,(»") is not smooth, we would have either

(i) A4,.,(y) intersects A4, ,(y") tangentially at some y", or

(i) there exists y” € 4,,(y) N A4,,1(y") such that T,.(4,.(y) VY
T,.(A,;,,(y")) span a real linear subspace of 7,.(X) of dimension larger than
2dim ¢V, = real dimension of Z,.

Possibility (i) cannot happen because both 4, ,(y) and A4, (") must be
totally geodesic at y”’ (by the identity theorem for real analytic functions), so
that they are determined by their tangent planes at y”. To rule out possibility
(i1) observe that both T,.(4,,(y)) and T,.(A4,,,(y")) are generated by real
parts of maximal directions at y”’ (obtained by parallel transport from y and
y’ respectively). Then translating them back from y’’ to the point x along
broken geodesics on Z, U 4, {(y) will yield more than dimFV, C-linearly
independent maximal directions at x, contradicting with the definition of V.
This establishes our claim that Z, ; =U, <5 4,.1(y) is a locally closed
submanifold. That Z, , is extendible follows easily by taking

z/.,= U expy(B(r +e)N TV(ZI.)) for some & > 0 sufficiently small.
YES; ’
For r + & < injectivity radius of X, clearly Z/ , is also a locally closed
submanifold such that Z,,, c c Z/,,.
We now have a sequence of real-analytic manifolds Z; such that

Z ccZ,cc--CCZ,CCZ,,,CC .-,

where Z,, equipped with the restriction of the Kahler metric on X, is
necessarily locally symmetric by the identity theorem of real-analytic functions.
Moreover, if we define Z to be the union U, ., Z, equipped with the induced
metric, Z is necessarily a complete Kahler manifold. In fact, at each z € Z,
there exists some y € S,, d(y, z) < € so that Z, ,, contains B(z; r — ¢). This
implies that for each z € Z we have B(z; r — €) C C Z, which in turn implies
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the completeness of Z. Recall that at each z € Z, T,(Z) is generated by the
real parts of maximal directions at z. Because of local symmetry, Z with the
induced metric splits locally into products of Hermitian symmetric spaces and
flat tori. If there is a flat torus as a local factor, it would not be possible for
T.(Z) to be generated by real parts of maximal directions. Hence Z is a
complete Kahler manifold with positive Ricci curvature bounded from below
by some ¢ > 0. By the theorem of Bonnet-Myers, Z must be compact, proving
Proposition (7.2).

(7.3) Pointwise reducibility of bisectional curvatures. Let x € U. Denote by &
a typical element of T}°(Z,) = V, and by { a typical element of V.-, the
orthogonal complement of V, in T!9(X). To prove that X is Hermitian
symmetric it suffices to show that

valj-ki=v§le-k/-=O for1<i,j,k,l<n‘

What remains to be proved is the vanishing of V(R ;. In fact, any terms of
the form V Ry x4 OF V Ry z44 would also be zero because of Proposition (6.1)
and the Bianchi identity. We may assume without loss of generality tht
Vly# T(U). In order to prove VR gz = 0 we will first show that ReV |,
is an integrable distribution, where V> denotes the orthogonal complement of
V. in T}°(X). From this and the arguments of Proposition (7.2) we will be
able to obtain integral submanifolds Z+ of ReV *|,, which extend to totally
geodesic compact complex submanifolds Z+ of X. Moreover, in the process of
proof we will also show that R.pe=0forall £€ V, and { €V}, x € U
This allows us to conclude that each such Z+ is Kahler-Einstein. Moreover,
holomorphic bisectional curvatures are nonnegative on Z* (because Z* is
totally geodesic). To prove the Main Theorem, by induction on dimension we
can assume that Z1 is isometric to a Hermitian symmetric space, so that
ViR g = 0 for all { € V., proving VR = 0 on X by the identity theorem
for real-analytic functions, thus establishing the Main Theorem.

In order to show that ReV |, is integrable we will first of all show that V|,
is invariant under parallel transport along all curves on U. For the proof of this
we will need the reducibility of bisectional curvatures as stated above:

Proposition (7.3). For each x € U and for all §€ V,, { € V.-, we have
Regg = 0.

Proof. For each x € U there exists a totally geodesic compact complex
submanifold Z, of X such that Z_ = Z, N U is an integral submanifold of the
distribution Re¥|,,. Suppose y € U, y & Z,; we assert that Z, N Zy =@.In
fact, the proof of this is exactly as in Proposition (7.2), where it was shown that
the Z, cannot have self-intersections. Since adjacent extended integral sub-
manifolds are mutually nonintersecting, the normal bundle Ny of the real
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manifold Z_ in X must be trivial as a differentiable vector bundle. As a
differentiable bundle, Ny is simply isomorphic to the bundle ReV* |, where
obviously we can assume that the open set U contains Z,. Sincee Ng is
differentiably trivial, the complex bundle N = Ng ® 5 C is a differentiably
trivial complex vector bundle. We have the decomposition
No.=NWeo NOL
where N1 is the eigenspace of J on N¢x = Ny, ®p C corresponding to the
eigenvalue 7, and N%! is that corresponding to the eigenvalue —i. Note that
this decomposition is possible because V> is closed under the J-operator. Let
N be the holomorphic normal bundle on Z,, ie., N = T'(X)|; /T(Z,).
As a differentiable C-vector bundle, N is isomorphic to N0 = Vl| It is
well known that any Hermitian holomorphic quotient bundle of a Hermitian
holomorphic vector bundle of semipositive curvature remains semipositive, so
that N, with the induced metric, is semipositive on Z,. It follows that the first
Chern class of N is represented by a semiposditive closed (1,1) form. Now,
Nc =N & N% = N @ N as differentiable C-vector bundles, where N is the
antiholomorphic vector bundle obtained by taking conjugates of transition
functions of N. By defining the length of & to be that of v for v € N, 5 € N,,
we see that ¢;(N) = ¢;(N). It follows that
e1(Ne) = ¢)(N10) + ¢ (N%) = ¢;(N) + ¢1(N) = 2¢,(N)
is represented by a semipositive closed (1,1) form. Hence, the triviality of N
as a differentiable C-vector bundle implies that ¢;(N)= 0 and that the
curvature form of N is identically zero on Z,. We assert that the flatness of the
Hermitian holomorphic vector bundle N implies the proposition, i.€., Rege = 0
for £ € V,, { € V' and x € U. To see this we examine the curvature form of
N more closely. Consider the exact sequence
0> N* - TH(X)*|; » TY(Z,)* - 0.
The flatness of N implies that of the dual bundle N*. By the curvature
decreasing property of Hermitian holomorphic vector subbundles, we have,
denoting by @' = Oy. and O = Opo ) the curvature forms of N* and
T'O(X)* with the induced metrics respectively,
0/(¢£,& 8%, 0*) < O(4,E ¢+, 0*)
for £ € T}O(Z,) and ¢{* € N*. Now let {e;,---,e,} be a basis of T10(X)
and {ef,---,e¥} be the dual basis. Then, for {* = ¥ a,e} belonging to N},
we have

O (£, £.¢%.0%) < O(£,£,¢%.0*) = La,a0(£, £ e, )
= —ZaiaJ-@Tl‘o(x)(g,ﬁ_; e_
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Here the next to last inequality follows from the standard relation between
curvatures of dual bundles and the last equality comes from the definition of
© 110, the curvature tensor of T1%(X) with the induced Hermitian matrix. It
follows now that ®@'(£, £, ¢*, {*) < 0 and that equality hold for all {* € N*
only if Ryz; = O forall { = Ya.e; such that Y a,e € N*. ButYae € N* if
and only if (X a,e*)(§) = 0 for all (e Txlo(Zx), ie., if and only if (Za, e,é >
= 0, so that

Ry =0 forall{ € V>,

proving Proposition (7.3).

(7.4) Invariance of } under parallel transport. Recall that .#],, is invariant
under parallel transport along curves on Z,, which implies in particular that
V|, is invariant under parallel transport along any curves (not necessarily
geodesics) y(¢) such that ¥(z) € V. In this subsection we assert the stronger
statement:

Proposition (7.4). The bundle V of maximal subspaces, defined by V =
U, cxV, and V= C-linear span of H ., is invariant under parallel transport
along any smooth curve | on X. In particular, V is a bona fide differentiable
vector bundle on X.

Proof. (I) First we assert that it suffices to prove that V|, is invariant
under parallel transport along geodesics. First of all, we contend that the latter
statement would imply that maximal directions remain maximal directions
when translated by parallel transport along any geodesic passing through U. At
each x’ € X there exists a geodesic y joining x’ to some point x € U.
Adjacent geodesics emanating from x will also intersect U so that maximal
directions at x’ remain maximal when translated by parallel transport along
some open cone of geodesics emanating from x” and hence along all geodesics
emanating from x’, by the identity theorem for real-analytic functions. It
follows that the bundle V of maximal subspaces is invariant under translation
by parallel transport along any geodesic. In particular, V' is a differentiable
vector subbundle of T'0(X). Let I(t), —8 <t < §, be any smooth curve.
Suppose x € Vi, and

x(1) = &) +£(1),  &(1) € Vi, £(t) € Vigyy,

is the decomposition of the parallel transport x(¢) € T,(,) according to the
orthogonal decomposition T1°(X)= V& V! . From the invariance of ¥
under parallel transport along geodesics it follows readily that ||{(2)]| = O(¢?),
Il - || denoting the length. To show that x(7) € V,, it suffices to show that
d|I$()||*>/dt = 0. Let £,(s) and {,(s) denote the translation of £(¢) and {(7) to
I(s), for s sufficiently close to ¢, by parallel transport. Obviously, £,(z) = £(1),
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§.(1) = §(¢) and £,(s) + §,(s) = x(s5). Let £,(s)=&/(s) + {/(s) and (s) =
£/(s) + {/(s) denote the decompositions of &, and §, according to the
decomposition T'(X) =V & V* . Then

§(s) = $als) + §7(s).
We have

G 151Ge) = 2Re( 0 £ ()

V ’ V 144

_ 2Re<zv—§,0, §>(t0) + 2Re<Es—§,o, §’>(t0).
Just as ||$(2)]] = O(t*) we also have ||$/(s)|| = O@(¢ — s5)?), so that
(v/ds )] (t5) = 0. To estimate (V /ds )§;/(¢,) we observe first of all

Lemma. Forany tsuchthat —8 <ty <8 andanyp, € T,(,)(X), let
p(s) =£(s) +{(s)

be the decomposition of the translation u(s) of u(t) = p by parallel transport
along 1. Then

1380 < Klw

with a positive constant K independent of t .
Proof of Lemma. Suppose p’ = c, and p',(s) = £'(s) + {’(s) is the corre-

sponding decomposition of ' Then, obviously {’(s) = ¢{(s) so that

V & V 2

g (1) = Caf(’)-
Now let K be the supremum of all ||(v/ds ){(¢)| obtained from all possible
with —8 <7 <4§ and from all possible u, € T;3(X) of unit length. K is
clearly finite by the real-analyticity of g, (s) jointly in p, and s, when p,(s) is
defined on T1Y(X)|; X (—28,28), where [ is an extension of / to (—28,28),

assumed to lie within the cut-locus of x € X. The Lemma is obviously valid
with this constant K. Given the Lemma, we can now estimate

1510 = 2iRe( T2 6) 10

< K[ (0) | 13(20) | = KIE(2o) I
To show that d|{(¢)||>/dt = 0 and hence that V is invariant under parallel
transport along any curve it suffices therefore to show that any real-analytic
function f(¢) defined on (—§8,8) satisfying |df/dt| < K|f | f(0) = 0, must
necessarily be identically zero. (Observe that d|[$|[%(0)/dt = {{(0),
(v/dt)$(0)) = 0.) Infact,if f= ¢, t™ + O™ 1), ¢, # 0

|df /dt | =’mcmz""_1 + O(t"')I =mjc, |t"L,

=2
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which clearly dominates K{f} in a neighborhood of 0 for any constant KX,
proving the assertion that Proposition (7.4) can be reduced to the correspond-
ing statement on the open set U for geodesics v.

(1I) The proof of the reduction on (I) implies that to prove Proposition (7.4)
it suffices to show that if a € .#,, x € U, and y(z), —86 <1t <4, is any
geodesic on U with y(0) = x, then, for the decomposition a(¢) = £(¢) + {(¢) of
the translation a(7) of a = a(0) by parallel transport along y according to the
decomposition T1(U) = V|, & V*|,, we have

I5() I = 0(#?).

In fact, this would imply that a(t) € V), so that ¥, is translated to V,,,
since V, q, is generated as a C-linear space by the space of maximal directions
H oy = M -

Suppose now {(7) = ct{(t) + O(¢?) with ||{(¢)|| = 1, where O(¢?) stands for
a vector-valued function of length of order O(¢?). Then,

R(a(1), alt), a(1), (1))
= R(£(r) +¢(2), €(0) +¢(0), £(2) + £(2), £(2) + ¥(2))
= R(£(1), €(1), £(n), &(1)) + 4ReR(£(2), £(1) . (1), £())

+4R(£(2), €(1), £(1), $(2) ) + 2ReR(&(2), ¥(2), &(2), ¢(1))
+4Re(£(1), (1), ¢(0), £(2) ) + O(e*).

By Proposition (7.3) R(£(2), £(1), §(2), £(¢)) = 0. We claim that actually for
any x € U, any £ € V, and any { € V> we have

(%) Ry =0 forall x € TM(X).

To see this, suppose £ = a € .# . From Proposition (7.3) we have R ;=0
forall { € V.1, so that { € 4. However, by Proposition (2.2.1) now we have

R

alxX

=0 forall x € T}(X),
which yields (x) since V, is the linear span of .# . It follows now from (*) that

R(a(1), a1), a(t), «(2)) = R(£(2), E(1), £(2), E(2) ) + O(1*).
On the other hand, if {(¢) = ctf(¢) + O(¢?), ||(2)|| = 1, we have

€ ]F =1 - %2+ 0(:%),
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so that
R(a(r), a(r), a(r), a(t) ) < (1 = 22 + 0(1*)) R 1gual0) + O(2*)
= (1 = 2¢%?)R 5,5(0) + O(2*).

aaoo

If ¢ # 0 we would have R ,z,5,(0) = 0 and R z.5,,(0) < —4¢’R 5,5(0) for
n = y(0). But we have simply, from Berger’s formula, R ;.5 ,,(0) = 0. This
proves ¢ = 0, so that in the decomposition a(z) = £(¢) + {(t) we have

1E(e) || = o(¢?)

implying by the reduction method of (I) that V is a differentiable C-vector
bundle invariant under parallel transport along any smooth curve on X,
proving Proposition (7.4).

(7.5) Integral submanifolds of ReV *. Recall that ¥ is a distribution of
tangent vectors of type (1,0) invariant under parallel transport and for each
x € X there is a compact totally geodesic complex submanifold Z, which is
locally symmetric. (Such a Z_ exists now for each x € X because one can take
the open set U to be X, since we know now that V' =U_ _ ,V, is a differentia-
ble C-vector bundle.) The Z,_ are integral submanifolds of ReV. According to
the orthogonal decomposition T'(X) =¥V & ¥+ we can divide vectors of
T'°(X)into types £ € Vand ¢ € V. In (7.2) we deduced that X is locally
symmetric if ¥Rz =0forall{ € V+.

Since V is invariant under parallel transport, the same applies to ¥+ . The
arguments in Proposition (7.1) for ¥ now apply to V'* to show that Re¥V'* is
an integrable distribution of tangent vectors. For each x € X, let Z* be the
leaf passing through x of the foliation defined by the distribution Re¥ * . The
arguments of Proposition (7.1) imply that Z} is totally geodesic and complex
analytic. From Proposition (7.3) we know that R = 0 whenever £ € V, and
§ € V. It follows by the hypothesis of the Main Theorem that Z} can be
regarded as a complete Kahler-Einstein manifold of positive Ricci curvature.
By the theorem of Bonnet-Meyers each Z is compact. Now it is obvious how
one can prove the Main Theorem by induction on the complex dimension of
X. In fact, Z}' satisfies the hypothesis on X in the Main Theorem. We can
therefore assume as an induction hypothesis that Z is a Hermitian symmet-
ric manifold unless ¥ = T'9(X), in which case there is nothing to prove.
Hence, V Rz = 0 whenever { € V' | proving VR = 0 on X for the curva-
ture tensor R, completing the proof of the Main Theorem.

Remarks. (i) By a result of Kobayashi [11], all locally symmetric compact
complex manifolds of positive Ricci curvature must be simply connected.
Hence, the manifold X in the Main Theorem is globally symmetric.
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(ii) It is clear that the proof of the Main Theorem implies immediately the
more general case when the Ricci tensor of X is only assumed to be parallel
and positive. Positivity of the Ricci tensor is only usd in proving compactness
of certain integral submanifolds, using the theorem of Bonnet-Meyers.

8. A Generalization of the Main Theorem

(8.1) Recall Corollaries 1 and 2 of §0 which asserts that the Main Theorem
can be generalized to the case when the Ricci tensor is parallel and the Kahler
manifold X is complete, possibly noncompact. By results of Bishop & Gold-
berg [4]-[6], for a compact Kahler manifold X of nonnegative holomorphic
bisectional curvature, the Ricci tensor of X is parallel if and only if X has
constant scalar curvature. To complete the present article it suffices to prove
Corollary 2, where X is only assumed to be complete and the Ricci tensor of X
is assumed parallel, in place of being Kahler-Einstein of positive Ricci curva-
ture.

The only places where the positivity of the Ricci curvature is used are (7.2)
and (7.5), where we applied the theorem of Bonnet-Meyers. The Kahler-
Einstein condition was only used in obtaining formulas for computing VR,
etc. But it is clear that these formulas (obtained by commutation) would still
hold if v (Ric) = 0, i.e. the Ricci tensor is parallel.

Proof of Corollary 2 (and hence Corollary 1). The point of the proof is
simply to split off the directions where the Ricci tensor vanishes. Define
W, C T}O(X) to be the subspace of all x € T}°(X) such that Ric(x, x) = 0.
Clearly W, is a C-vector subspace of T!9(X) since the Ricci form is a
Hermitian symmetric bilinear form on X. Since the Ricci tensor W = U, o y W,
is a differentiable vector bundle on X invariant under parallel transport, by
the arguments of Proposition (7.2) ReW as an integral distribution of real
tangent vectors. The leaves L, of the foliation defined by Re W are flat since
they are totally geodesic, the Ricci tensor on L is everywhere zero and
holomorphic bisectional curvatures of L, are nonnegative. Let W~ be the
orthogonal complement of W, in T}°(X). Then W = U, . yW,* is invariant
under parallel transport. Denote by Z, a leaf of the foliation defined by
ReW . Then Z, carries positive Ricci curvature by the definition of W,*.
Moreover, the Ricci tensor of Z, is parallel since Ry, = 0 for all £ € W,*
and x € W,. By remark (ii) of (7.5) we conclude that each Z_ is a (global)
Hermitian symmetric space, so that V,R.gz = 0 for all £ € W~ . Since W is
invariant under parallel transport and R, = O for all x € W, it follows that
V:R = Vv_R =0 for £ € W and x €W,. The only other terms of

XXXX X T xXxX
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VR, up to conjugation and permutation of indices, are of the types V, Rz,
where p € T19(X) is arbitrary. It suffices therefore to show that

(%) Rip=0 forall g€ TH(X).

To prove (*) it is equivalent to prove R,;,. =0 for all p € T'O(X) since
R s,z =0forall x € W and u € T%(X). Let p € T}°(X) and consider the
function
F(e) = R(x + &, x + &1, x + &1, x + ep)

defined for & real. Then, from F(¢) > 0 we obtain by variation formulas that
inxﬁ =0 and 4Rx,-mﬁ +2ReRxﬁXﬁ = 0. But singe Rozun= 0 and we can
always assume ReR,; . < 0 if i is replaced by e’ for an appropriate real
angle 4, it follows that R_; . = 0. Computing now the third variation of F
against ¢ at 0, we obtain R_;,; = 0, proving (), thus showing that VR = 0 on
X and proving Corollary 2 (and hence Corollary 1).

Concluding remarks. (i) By Koszul [13] and Lichnerowicz [16] every compact
homogeneous Kahler manifold X carries a Kahler metric with parallel and
semipositive Ricci tensor. Analogous to the situation of Gray [8] our theorem
shows that such a Kahler metric on X cannot have nonnegative holomorphic
bisectional curvature everywhere unless X is Hermitian symmetric (cf. Lich-
nerowicz [14], [15]).

(ii) As was indicated in Gray [8], every compact homogeneous space X of the
form G/T, where G is a compact Lie group and T is a maximal torus of G,
admits an Einstein and bi-invariant metric of nonnegative sectional (and hence
nonnegative bisectional) curvature. This metric is in general not Kihlerian.

(iii) See Auslander [1] for an example of compact flat Kahler manifolds
which are not homogeneous. Hence, in the formulation of Corollaries 1 and 2,
we can only conclude that X is locally symmetric.
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